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Abstract

This paper examines the dynamic efficiency of policy uncertainty in the US wind
energy industry. Policy expiration induced uncertainty for wind farm investors and
expedited investment. I document timing misalignment among wind farm investment,
turbine technology advancement, and evolving demand for wind energy. I then de-
velop a dynamic entry model under policy uncertainty that incorporates long-term con-
tract negotiation and buyer choice. Model estimates reveal that a policy lapse reduced
the perceived likelihood of renewal to 30%. Eliminating policy uncertainty increases
the social surplus by 5.9 billion dollars and could reduce fiscal expenditure without
compromising social welfare.
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1 Introduction

Government policies are frequently implemented to foster the growth of infant industries.
However, given limited government resources and political cycles, many policies start off
by committing to a short period with expiration dates, which might get renewed later. This
common implementation pattern of “enactment – expiration – renewal” segments the pol-
icy into short time windows, induces policy uncertainty at the expiration time, and steers
investors to near-term incentives who should otherwise plan for a longer horizon.

This paper explores the dynamic efficiency of policy uncertainty, using the US wind en-
ergy industry as an empirical setting. Wind energy expanded from a small portion of total
electricity generation in 2000 to become the largest renewable energy source in 2019. This
industry is characterized by significant irreversible investment costs and has been heavily
supported by federal tax incentives, known as the Production Tax Credit (PTC). The PTC
provides inflation-adjusted tax credits for each unit of output over a ten-year period, and the
qualification hinges on wind farms starting production before policy expiration. Although
the PTC has been in place since 1992, it has been implemented in a series of shorter pol-
icy windows with set expiration dates.1 A lack of government commitment, coupled with
occasional lapses between expiration and renewal, caused policy uncertainty among wind
farm investors about future extension. Consequently, investors expedited their investment
under policy uncertainty and often bunched investment timing near the expiration time. It
leads to two opposing forces shaping social welfare. On the one hand, the expedited in-
vestment delivers environmental benefits earlier. On the other hand, the bunching of the
investment timing creates a misalignment with the improving upstream turbine technology
and the evolving demand for wind energy. The overall welfare effect is ambiguous ex ante.

I first provide data evidence for this welfare trade-off. I compile a comprehensive data
set of investment, production, and long-term contracts in the US wind energy market from
2003 to 2018 and document three key stylized facts. First, I find significant bunching
of wind farm investment at the expiration dates of short policy windows, especially in
2012, mainly due to a lapse between expiration and renewal. Second, while the invest-
ment bunched at expiration dates in earlier years, the wind turbine technology is quickly

1As noted in Bistline, Mehrotra, and Wolfram (2023), the continual expiration and extension of the PTC
in the wind industry created an “on-again/off-again” status of the policy and resulted in a boom-bust cycle
of wind development. The industry calls for “strong long-term policy support” according to the Union of
Concerned Scientists.
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improving and becoming cheaper. This creates a large misalignment between the timings
of investment and technological advancement. Third, utilities, an important group of buy-
ers of wind capacity, have shrinking unfulfilled demand as they procure more wind energy
over time and meet state-level regulations. Consequently, policy uncertainty expedited the
entry of wind farms with older technology, which matched with utilities having larger unful-
filled demand. In contrast, more recent entrants with better technology sell wind capacity to
utilities with smaller unfulfilled demand, indicating a loss in matching efficiency between
utilities and wind farms due to policy uncertainty.

Building on the stylized facts and institutional details, I develop a dynamic model of
wind farms’ entry problem.2 The set of potential entrants in each market consists of wind
farm investors who have obtained interconnection agreements with electricity grid oper-
ators and have not yet entered. Each investor needs to decide whether to enter or wait.
The incentive to enter lies in securing the PTC for the next ten years and matching with a
buyer of larger unfilled demand. Conversely, the incentive to wait lies in the prospect of
accessing future turbines with higher productivity and lower prices. This trade-off depends
crucially on the investor’s belief about the likelihood of the PTC renewal. If the probabil-
ity of extending the PTC is low, the expected payoff from entering is likely to exceed the
continuation value of waiting and, as a result, wind investors will rush into the market.

Specifically, potential entrants make entry decisions comparing the option value of wait-
ing and the expected profit from investment net of entry cost. I incorporate the time-varying
perceived likelihood of policy renewal as parameters subsumed in the option value of wait-
ing, which introduces non-stationarity to the dynamic problem. As the belief structure will
be of infinite dimension without restrictions, I impose two assumptions to make the esti-
mation feasible. First, if the policy is paused, wind farm investors will hold the belief that
the policy will be terminated forever. Second, the likelihood of a one-year policy extension
is perceived as constant in future years for each cohort but varies across cohorts. Under
these two assumptions, the non-stationary dynamic problem is transformed into a sequence
of cohort-specific stationary problems.

Conditional on entry, wind farms choose whom to supply, with two primary channels to
sell wind capacity. The first channel is to sell capacity to utilities over a long-term Power
Purchase Agreement, while the second channel involves selling the capacity to other non-

2“Investment” and “entry” are used interchangeably and defined as the decision to start building a wind
farm. During the sample period, the frequency of wind farm retrofitting was low.
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utility buyers such as corporations, or through merchant hedge contracts. I model demand
from non-utility buyers using a linear demand curve, combining turbine technology, turbine
price, contract types, and a set of demand shifters. Alternatively, if wind farms sell to
utilities, they choose which utility to supply, weighing the profit from a potential negotiation
against the pairwisematching cost that depends on the locations of the two parties. Thewind
farm and the matched utility engage in Nash bargaining to determine the capacity of wind
farms and the procurement price.

The model estimation involves three steps. First, I estimate the bilateral bargaining
model, in which the bargaining weight parameter is identified by the pass-through of util-
ities’ willingness to pay as well as wind farms’ turbine cost to the negotiated price. I find
that utilities capture two thirds of the gains from trade when bargaining. Moreover, 22.4%
of wind farms will earn zero or negative profits without the PTC. Even conditional on pos-
itive profits, the average profit without the PTC is 47.0% lower. This result highlights the
potential cost of missing deadlines and losing the qualification of the PTC. It also explains
the rushed entry when there is perception of a lower probability for the PTC renewal.

Second, I estimate a linear demand curve for non-utility buyers and instrument the wind
energy price with supply-side shifters as well as state policies to identify the price coeffi-
cient. The estimated average elasticity is around -1.6. I estimate the buyer choice model
and find that the mean likelihood of selling capacity to a non-utility buyer is 24.2%. The
matching cost between a wind farm and a utility increases with their geographical distances.

Last, I estimate the parameters in the dynamic entry problem. There is a key identi-
fication challenge on how to disentangle the policy belief parameters from the entry cost
distribution parameters. My identification argument hinges on the temporal structure of
the policy. I leverage the fact that the government announced in 2015 to cover the subsidy
from 2015 to 2019. The government further imposed a safe harbor period: wind farms
could qualify for the PTC if more than five percent of their total investment costs were in-
curred before policy expiration, with a two-year grace period to begin operation (extended
to four years after 2016). I rely on this more recent policy window to identify parameters
of entry cost distribution, assuming the perceived likelihood of policy renewal to be one.
Moreover, the bunching of investment in earlier deadline years pins down the perceived
likelihood of policy extension, conditional on entry costs, turbine technology, and utility
demand. I estimate the mean realized entry cost to be approximately 35 million dollars, and
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the mean entry cost increases with the land price. More importantly, there was enormous
uncertainty towards policy renewal especially for the 2011 cohort. The average perceived
probability of policy renewal is about 30% due to the pessimism about the policy renewal
as well as the delayed extension, which largely explains the investment spike that year.

With estimated model primitives, I implement three counterfactual analyses. In the first
counterfactual exercise, I simulate the investment decision when the perceived likelihood of
policy renewal is one such that there is no uncertainty in policy renewal. Removing renewal
uncertainty reduces the number of new wind projects in 2011 by 52.7% and increases the
number of newwind projects between 2012 and 2018 by 24.1%on average annually.3 Those
delayedwind farmswould postpone their entry by 3.6 years. Overall, the total wind capacity
increases by 6.3%once policy uncertainty is removed and the total output increases by 8.7%,
as wind farms enter later when the turbine technology is more advanced. I follow Callaway,
Fowlie, and McCormick (2018) to estimate the total benefits of wind energy, and calculate
social surplus from wind energy as total benefits minus turbine costs and entry costs borne
bywind farm investors, as well as the total subsidy. I find that the social surplus increases by
5.9 billion dollars and 28.9% after eliminating policy uncertainty. This result demonstrates
that although the entry of wind farms is delayed, this negative effect is completely offset by
a better timing alignment among investment, technology, and wind demand.

In the second counterfactual exercise, I investigate how welfare effects of policy un-
certainty change under different subsidy levels. I find that if policy uncertainty is fully
removed, the subsidy level could be reduced by $2/MWh (around 9%) without compromis-
ing social welfare, which demonstrates the fiscal burden brought by policy uncertainty. In
the third counterfactual exercise, I evaluate the welfare effects of resolving policy uncer-
tainty early. I simulate a scenario where the government announces the policy extension
status before wind farms make their entry decisions. The policy status follows a Bernoulli
distribution with a mean equal to the estimated likelihood of policy extension. This exer-
cise maintains the level of policy uncertainty, and thus the expected subsidy level, as ob-
served in reality, but eliminates ex-ante uncertainty by resolving policy uncertainty early.
I find that early resolution reduces rushed entries and mitigates the negative effects of pol-
icy uncertainty. It captures 14.0% of the welfare gain achieved by fully eliminating policy
uncertainty. Therefore, keeping the expected value of subsidy the same but reducing the

3“Wind farm” and “wind project” are used interchangeably.
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variance of realized policy status can recover 14.0% of welfare loss, while the rest 86.0%
of welfare loss is due to a lower expected value of subsidy. Although the subsidy is in place
on the market at all times, ex-ante policy uncertainty alters the expectations of investors
and undermines the benefits of the subsidy.

This paper contributes to the following strands of literature. First, this paper adds to
the literature on the measurement and evaluation of policy uncertainty.4 Policy uncertainty
is pervasive and broadly studied in both macroeconomics and microeconomics. Examples
include uncertainty in economic policy (Baker, Bloom, andDavis, 2016), trade policy (Han-
dley and Limão, 2017), and environmental policy (Dorsey, 2019; Gowrisankaran, Langer,
and Zhang, 2024).5 Gowrisankaran, Langer, and Zhang (2024) is most closely related to
my paper and studies the welfare consequences of policy uncertainty in the Air Toxics Stan-
dards on the coal power industry. Compared to the existing literature, my paper focuses on
the uncertainty in the subsidy renewal, which is a common but understudied cause of pol-
icy uncertainty. My paper exploits the temporal variation in the policy design to identify
firm belief, and estimates a novel empirical model to quantify policy uncertainty from the
bunching of investment timing. Moreover, my paper highlights two new channels through
which policy uncertainty shapes social welfare: the misalignment between the timings of
investment and technology, as well as the matching efficiency between buyers and sellers.

Second, this paper relates to the literature on the renewable energy market. Recent work
has covered a wide range of topics, including intermittency (Gowrisankaran, Reynolds,
and Samano, 2016; Petersen, Reguant, and Segura, 2024), values of wind energy (Cullen,
2013; Novan, 2015), upstream innovation (Covert and Sweeney, 2022; Gerarden, 2023),
and renewable subsidies (De Groote and Verboven, 2019; Kay and Ricks, 2023; Mu, 2023;
Bradt, 2024), among others.6 My paper develops a new structural model for the wind energy
market in the US, which features the bilateral bargaining of Power Purchase Agreements,
the matching between utilities and wind farms, as well as dynamic entry of wind farms
under policy uncertainty, incorporating rich heterogeneity motivated by policies and a set
of endogenous choices of wind farms.

4More broadly, this paper is also related to the real options theory and empirical applications (Dixit and
Pindyck, 1994; Collard-Wexler, 2013; Kellogg, 2014).

5Policy uncertainty in the Production Tax Credit in the US wind industry has also been recognized by
earlier work such as Barradale (2010) and Johnston and Yang (2019).

6Other related topics include transmission congestion (Fell, Kaffine, and Novan, 2021), carbon taxes
(Elliott, 2022), contract risks (Ryan, 2021; Fabra and Llobet, 2025), risk sharing (Hara, 2023), and intercon-
nections (Gonzales, Ito, and Reguant, 2023; Johnston, Liu, and Yang, 2023).

5



Third, this paper directly speaks to the empirical literature about industrial policy imple-
mentation. Specific to the power and clean energy sector, there are recent papers about the
timing of subsidies (Langer and Lemoine, 2022; Armitage, 2021), subsidy design (Barwick,
Kwon, and Li, 2023), and subsidy types (Johnston, 2019; Aldy, Gerarden, and Sweeney,
2023). Different from the previous papers, my paper focuses on policy continuity and
demonstrate the potential welfare loss from the “on-again/off-again” renewal pattern of
subsidies, especially when the market environment is dynamic. Last, this paper also con-
tributes to the literature on the dynamic model and firm beliefs (Doraszelski, Lewis, and
Pakes, 2018; Jeon, 2022). I develop a tractable industrial dynamic model with evolving pol-
icy beliefs under policy uncertainty. Moreover, I recover investors’ belief parameters with
a novel strategy, utilizing both the temporal structure in the policy design and the bunching
of investment timing.

2 Wind Industry and Government Policies in the US

2.1 Wind Industry in the US

Wind energy has become America’s largest renewable energy source. It provided 8.3% of
total electricity generation and 42% of new power plant installation in 2020 (Wiser and
Bolinger, 2021). As shown in Figure 1, wind energy grew from a very marginal share of
total electricity generation in 2000 to the fourth most important energy source in the US in
2020. Geographically, wind energy is concentrated in Texas, the Midwest, and the Plains.
Texas enjoyed the largest wind generation, taking up 28% of total wind power generation
nationwide in 2019.

A wind farm requires enormous upfront investment. For example, investors had to
spend more than 100 million dollars to construct an average-sized wind farm in 2019 just
for turbine procurement, not to mention the additional costs for turbine transportation, wind
farm construction, land lease, permits, and grid access.7 It also takes a long time to plan
and construct a wind farm as summarized in Appendix Figure A1. First, investors need
to sign a land lease, acquire government permits, and apply for interconnection agreement
after lengthy waiting in the interconnection queue. Next, investors negotiate with upstream
turbine manufacturers for equipment procurement, negotiate with utilities or corporations

7In 2019, an average wind farm had 65 turbines with an average turbine nameplate capacity of 2,550 kW.
The market price of wind turbines is $700/kW, and thus the turbine cost alone would be $116 million.

6



Figure 1: Shares and Penetration Rates of Wind Energy
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Notes: This figure shows electricity generation shares and penetration rates of wind energy. Panel (a)
presents shares of electricity generation between 2000 and 2020 by different energy sources based on data
from EIA-906, EIA-920, and EIA-923. Red diamonds denote shares of electricity generation from wind
farms, while blue squares denote shares using solar energy. Panel (b) presents wind penetration rates in 2019
for each contiguous state. Wind penetration rate is defined as the fraction of electricity produced by wind
compared to total generation.

to sell outputs, and seek financing from banks. Finally, with contracts secured, investors
can start the construction process. A typical wind development process takes three to four
years in total, and the construction process alone takes six to nine months. Once a wind farm
starts operation, it will typically be in service for about 30 years. Large sunk costs, coupled
a long time to build, highlight the importance of dynamic incentives in wind investment.

There are two types of investors in the market: independent power producers and utili-
ties, and they together own over 99% of wind energy. On the one hand, independent power
producers own approximately 80% of total capacity. They typically sign a long-term wind
procurement contract with utilities or non-utility buyers (e.g., corporations). These con-
tracts are known as the Power Purchase Agreements (PPA). Negotiating and signing a PPA
is critical for project financing as it secures a long-term revenue stream. A typical PPA spec-
ifies the procurement price, procured capacity, duration of the agreement, and other details.
Moreover, independent power producers could also sign merchant hedge contracts.8 As
shown in Appendix Figure A2, utility PPAs are the most common channel to sell wind
power, while more non-utility PPAs emerged after 2015.

8One of the most common forms of merchant hedge contracts in ERCOT is a physical fixed-volume
hedge. Under this contract, a wind project owner sells its actual energy generated at the floating price at the
node, and hedging counterparty pays the wind project owner for fixed signed energy amount at price difference
between pre-negotiated fixed price and the floating price at the node (Bartlett, 2019).
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On the other hand, utilities directly own the rest 20% of wind capacity. As they can
either own wind farms or procure wind energy from independent power producers, endog-
enizing wind capacity under direct utility ownership requires modeling their make-or-buy
choices and is beyond the scope of this paper. Instead, this paper focuses on wind farms
invested by independent power producers due to their dominant market shares.

2.2 Government Policies

The wind industry in the US crucially relies on federal supports, as well as numerous state-
level policies. The most important federal policy is the Production Tax Credit (PTC), which
provided qualified wind farms with a 10-year inflation-adjusted tax credit for wind power
generation and stood at $24/MWh in 2018. Although the PTC has been in effect since
1992, incentives provided by the PTC were segmented into smaller policy windows with
set expiration dates. Conditions to qualify for the PTC are tied to these expiration dates:
before 2012, a wind farm was required to start operation before the policy expiration, while
after 2013, a wind farm is required to demonstrate that five percent or more of its total
investment cost has been incurred before the policy expiration, with a two-year safe harbor
to start operation (extended to four years after 2016).9 As shown in Figure 2, the PTC
is enforced by different acts across sample periods. For example, from January 2010 to
December 2012, the PTC was enacted in the American Recovery and Reinvestment Act.
Subsequently, the PTC was enacted in the American Taxpayer Relief Act (2013), the Tax
Increase Prevention Act (2014), and the Consolidated Appropriations Act (after 2015).

Since 2005, there have been seven different acts implementing the PTC sequentially,
which segments the policy into windows of one to five years. Before 2009, PTC renewals in
the next act were announced several months before expiration. However, at the end of 2012,
2013, and 2014, PTC renewals were announced after the deadlines had passed. Although
the lapse between policy expiration and renewal could be as short as two days at the begin-
ning of 2013, it still disturbed market incentives and created policy discontinuities. With a
lack of government commitment, wind investors were faced with policy uncertainty before
expiration about whether the PTC would be extended or not. The delayed policy action
from Congress and political debates about renewable subsidies exacerbated the uncertainty

9A more recent change in the safe harbor rule can be referenced at National Law Review.
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in the market.10 11

Figure 2: Timeline of the Production Tax Credit
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Notes: This figure shows timing of the Production Tax Credit. Starting points of arrows indicate
announcement time of policy renewal in the next act, while endpoints represent start time of the new act.
There were 2-day, 11-month, and 11-month lapses between expiration of the previous act and announcement
of the next act at the end of 2012, 2013, and 2014, respectively, though the policy was retroactive.

The 2011 Wind Technologies Market Report (Wiser and Bolinger, 2012), published by
the Department of Energy in August 2012, suggested that investors were uncertain about the
PTC renewal, and tended to rush into the market to qualify for the tax credit. According to
the report, “...the wind energy sector is currently experiencing serious federal policy uncer-
tainty, and therefore rushing to complete projects by the end of the year. Moreover, 2011
saw another year pass without any concrete Congressional action on what are seemingly
the wind power industry’s two highest priorities – a longer-term extension of federal tax (or
cash) incentives and passage of a federal renewable or clean energy portfolio standard...”

Concerns about the expired PTC were ultimately proven to be unnecessary, as it was
extended again only 2 days after expiration through the American Taxpayer Relief Act
with the tax credit applied retroactively. Similar events occurred again in 2014 and 2015.
Although the latter two lapses were much longer, wind farms only needed to incur five
percent of its total investment cost before deadlines to qualify for the PTC thanks to the safe

10For example, Republican US presidential candidate Mitt Romney declared that he would let wind power
tax credits expire (see The Guardian).

11American Taxpayer Relief Act of 2012 was introduced in the House on July 24, 2012, as a partial reso-
lution to the US fiscal cliff. The passing of the bill involved days of negotiations between Senate leaders and
the Obama administration (see Star Tribune).
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harbor period. Starting in 2015, incentives provided by the PTC were stabilized, despite the
decreasing amount of the tax credit.

Along with the PTC, there was also the Section 1603 Grant, which provided an upfront
investment subsidy covering 30 percent of total investment cost. Between 2009 and 2012,
investors could choose either the PTC or the Section 1603 Grant. The Section 1603 Grant
was announced to expire after 2012 and has been terminated ever since.12

Apart from federal policies, there are also various state-level policies. One important
state-level policy is the Renewable Portfolio Standards (RPS). RPS stipulates the minimum
share of electricity generation using qualified renewable energy for utilities. If utilities fail
to satisfy the requirement, they have to buy renewable credit from the credit market. Oth-
erwise, they can also sell credits for profits. RPS provides important incentives to utilities
to procure wind energy.13 States could also have corporate/sales tax incentives, property
tax incentives, feed-in tariffs, bond/loan programs, and other industry recruitment policies
for wind farms. As shown in Appendix Figure A3, states with RPS are also more likely to
have other different kinds of state-level incentives for wind energy.

3 Data and Stylized Facts

3.1 Data

I compile several data sets in the US wind industry. The first two data sets come from the
United States Wind Turbine Database (USWTDB) maintained by the United States Geo-
logical Survey (USGS) and the EIA-860 maintained by the Department of Energy’s Energy
Information Administration, respectively. These two data sets provide universal informa-
tion about investment and characteristics of the utility-scale wind farms that were online
between 2003 and 2019. USWTDB has more comprehensive coverage and detailed wind
turbine characteristics, while EIA-860 also includes information about the owners of wind
farms and rich data for other energy sources. Moreover, I supplement these two data sets
with EIA-923, which covers the monthly electricity generation and enables me to measure
production efficiency of wind projects.

12Johnston (2019) and Aldy, Gerarden, and Sweeney (2023) study the selection and efficiency conse-
quences of having both production tax credits and investment subsidies in the market.

13Abito, Flores-Golfin, van Benthem, Vasey, and Velichkov (2022) studies the consequences of cross-state
trading restrictions and state-specific interim annual targets under RPS.
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Both USWTDB and EIA-860 record the month when a wind farm starts to supply elec-
tricity, however, as illustrated in Appendix Figure A1, there is a lag between finalizing
investment decision and starting operation, including a construction period of six to nine
months. I follow Johnston and Yang (2019) to use the information from the Federal Avi-
ation Administration (FAA) Obstruction Evaluation/Airport Airspace Analysis (OE/AAA)
database. The FAA data reports the scheduled dates of starting construction. I match the
FAA data with EIA-860 and measure the time of investment as the time when a wind farm
starts construction.14

The second data set is the Power Purchase Agreement (PPA) data from the American
Clean Power Association (formerly American Wind Energy Association). The PPA data
includes long-term contract information such as names of the wind farms and buyers, the
amount of capacity, negotiated price, and contract duration.

Moreover, I collect interconnection queue data from the ISO/RTO websites and obtain
renewable credit price data from a financial service platform Marex. I also use retail elec-
tricity price data from EIA-861, agricultural land price data from the USDA National Agri-
cultural Statistics Service, and the annual turbine price from Lawrence Berkeley National
Laboratory. The the state-level policies including Renewable Portfolio Standards were
hand-collected from Database of State Incentives for Renewables & Efficiency (DSIRE).15

3.2 Stylized Facts

3.2.1 The Timing of Investment

I first investigate the time trend of wind farm investment. Figure 3 presents the annual and
monthly numbers of wind farms that are newly online. Significant bunching in wind farm
investment occurred whenever the policy was scheduled to expire. A substantial number
of wind farms started operation between 2008 and 2012, especially in 2012. Following the
large investment spike in 2012, new investment dropped significantly in 2013. It was only
after 2015 that the annual level of investment recovered, and the time trend stayed stable
afterward. I plot the time trend of the total new wind capacity in Appendix Figure A4, and

14FAA data started from 2008 and many projects didn’t report the scheduled time to begin construction.
Around 42% of wind farms online between 2003 and 2018 from EIA-860 can be matched with the FAA data.
For the rest of the sample, I calculate the average construction period by online years and impute the scheduled
time to begin construction by subtracting the construction period from the online time of a wind farm.

15For more detailed data processing, please refer to the Online Supplemental Appendix.
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find a similar bunching pattern. Moreover, the sizes of wind farms were stable in 2012 and
have shown an increasing trend over time.

Figure 3: Time Trend for Wind Projects Newly Online
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Notes: This figure shows the annual and monthly numbers of wind projects that are newly online. I
construct the annual and monthly time trends based on the data from EIA-860. Red bars in Panel (a)
represent years with policy expiration, while red squares in Panel (b) represent the new projects that are
online in December.

This time pattern aligns well with the timing of policy implementation. During the years
between 2009 and 2012, in addition to the Production Tax Credit, there was also the Section
1603 Grant, which provided extra funding flexibility to investors and partly explained the
surge of wind projects during this period. By the end of 2012, there was significant uncer-
tainty about the PTC extension due to the time lapse in renewal. Consequently, there was
a rushed inflow of new wind projects before the policy expiration, as wind farm investors
hoped to secure subsidies for next ten years of operation, resulting in the bunching of new
investment in 2012. The impacts of the PTC expiration is more pronounced when examin-
ing the monthly trend of new wind projects. As shown in Panel (b), the bunching in 2012
was mainly driven by a massive entry in December 2012, which was the exact month of
expiration of the PTC. Although the PTC was renewed shortly after its expiration in 2013,
the investment flow didn’t recover immediately, as it takes a relatively long time to build
new wind farms. After 2015, the PTC was promised for a longer window, resulting in a
steady time trend of new wind projects between 2015 and 2019.

There are alternative explanations for the bunching in the online timing. First, wind
farms might shorten the construction process to meet the expiration dates of the PTC. How-
ever, as shown in Panel (a) of Appendix Figure A5, the average construction time remains
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stable at around nine months across different online years. There was suggestive evidence
in Panel (b) that wind projects starting construction in 2012 were more likely to have a
shorter construction period to meet the end-of-year expiration date. However, this differ-
ence is relatively small in magnitude. Second, the massive entry in 2012 might reflect the
expedited waiting process in the interconnection queue. However, as shown in Panel (a) of
Appendix Figure A6, the total years spent between entering into the interconnection queue
and starting construction are also stable across years when wind farms start construction.
Moreover, Panel (b) shows that many projects that started construction in 2011 entered the
interconnection queue as early as before 2006. Therefore, the bunching in the online years
is achieved mainly through the expedited investment decision, instead of merely reflecting
the shortened construction time or the interconnection approval time.

3.2.2 Timing Misalignment

In contrast to the bunched investment timing, the technology of wind turbines is continu-
ously improving over time. There are three key components of a typical horizontal-axis
wind turbine: a tower, a nacelle, and three rotor blades. The potential of wind power gener-
ation crucially depends on the height of the tower and the length of the rotor blades. Taller
towers enable the turbine to access better wind resources up in the air, while longer rotor
blades lead to larger swept areas and capture more wind energy inputs. As shown in Ap-
pendix Figure A7, the hub heights and rotor diameters of new wind farms are getting larger,
almost following linear trends after 2009. The average hub heights and rotor diameters of
wind farms invested between 2014 and 2019 are 6.5% and 24.6% larger compared to those
invested between 2008 and 2013.

Policy uncertainty induces a misalignment between the timing of investment and tech-
nological advancement. Panel (a) of Figure 4 presents the contrast between the bunched
investment timing and improving turbine technology. I plot the number of new wind farms
according to their construction start years. Moreover, I measure the technological effi-
ciency using capacity factor at the age of one, defined as the ratio of average power output
and maximum power capability.16 Newly invested wind farms between 2008 and 2013 had

16According to EIA, capacity factor is defined as “the ratio of the electrical energy produced by a generat-
ing unit for the period of time considered to the electrical energy that could have been produced at continuous
full-power operation during the same period.” A detailed description of capacity factors can be found in
Appendix Section B.
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an average capacity factor of 0.32, while that number between 2014 and 2018 rose to 0.41,
increasing by 27.2%. While the investment bunched in earlier years, the turbine technol-
ogy is continuously and quickly improving, and thus there were many wind farms equipped
with less productive turbines as a result of policy uncertainty.17

Figure 4: Investment, Turbine Technology, and Turbine Price
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(b) Turbine Price
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Notes: This figure shows the time trend of wind farm investment, as well as average capacity factor and
turbine price for newly installed wind projects. Panel (a) shows the time trend of capacity factor, measured
as the ratio of total annual output to the maximum power output (nameplate capacity scaled by 24× 365),
based on the data from EIA-923. I plot the investment time trend as the gray dashed line for comparison.
Panel (b) shows the time trend of turbine price using data from Lawrence Berkeley National Laboratory.

Moreover, the average turbine prices are also decreasing over time. As shown in Panel
(b), since peaking at around 1,700 dollars per kilowatt between 2008 and 2009, the average
turbine price has been declining and fallen below 1,000 dollars per kilowatt since 2015.
Therefore, early investment between 2008 and 2011 largely foregoes later cheaper turbines.

Decreasing turbine procurement prices and increasing turbine production efficiency to-
gether indicate a substantial option value of delaying entering the market for better and
cheaper technology. However, policy uncertainty expedited wind farm entry but partially
missed the benefits of technological improvement and potentially led to inefficient invest-
ment timing.

17One concern is that the average productivity of a wind farm is also affected by the wind resources of its
location, and later entrants might be faced with locations with worse wind resources. However, as shown in
Appendix Figure A8, the average wind speed for each cohort is generally stable over time. The wind resources
are less volatile for later entrants, as the standard deviation of daily average wind speed is lower.
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3.2.3 Matching Efficiency between Wind Farms and Utilities

Utilities are important buyers of wind power, as they procure wind capacity through long-
term contracts from wind farms. One crucial incentive for them to procure wind capacity
is to meet the state-level Renewable Portfolio Standards, which require utilities to have a
certain share of total electricity generation from renewable energy. I construct a variable, re-
newable portfolio gap (RPG), which is defined as the difference between renewable energy
generation and the amount stipulated by the Renewable Portfolio Standards. It measures
the unfulfilled demand of each utility for renewable energy in order to meet the Renewable
Portfolio Standards.18

Figure 5: Matching Efficiency between Utilities and Wind Farms
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Notes: This figure provides descriptive evidence about the matching efficiency between utilities and wind
farms. Panel (a) shows the binned scatter plot of wind capacity to the renewable portfolio gap (RPG) of
utilities. Renewable portfolio gap measures the unfulfilled demand of each utility for renewable energy in
order to meet the Renewable Portfolio Standards. I control electricity prices, turbine productivity, and time
trends. Panel (b) shows the time trend of the average RPG of utilities that procured wind capacity each year,
as well as the mean turbine capacity factor for each new cohort of wind farms.

I find that utilities with a larger renewable portfolio gap, and thus more unfulfilled de-
mand, are more likely to procure a larger amount of wind capacity through long-term con-
tracts as shown in Panel (a) of Figure 5. This relationship is robust conditioning on a set of
controls including electricity prices, turbine productivity, and linear yearly trends. I further

18The details of how this variable is constructed and estimated can be found in Section 4 and Appendix
Section B.
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plot the time trend for average renewable portfolio gaps of utilities in Panel (b). The aver-
age renewable portfolio gaps of utilities increased before 2011 as more states implemented
Renewable Portfolio Standards. However, with the addition of more wind capacity, the
average unfulfilled demand for utilities has decreased sharply since 2011, in contrast to the
ongoing increase in turbine productivity over time. Consequently, a mass of wind farms
rushed into the market due to policy uncertainty in the early years of the industry, equipped
with turbines of lower productivity but matched with utilities of larger unfulfilled demand.
For more recently entered wind farms, although the turbine technology has improved sig-
nificantly, they could only sell capacity to utilities with smaller unfulfilled demand. This
misalignment leads to a loss in matching efficiency between the utilities and wind farms.

Motivated by industry background and stylized facts, I build an empirical model of wind
farm dynamic entry decision under evolving technology, demand, and policy uncertainty. I
explore the key determinants of wind farm profits, and how policy beliefs held by investors
evolve over time.

4 Model

I develop a dynamic model of wind farms’ entry problem. Wind farm investors form beliefs
about the PTC renewal probability and decide whether to enter or wait. Under the policy
uncertainty, wind farm investors secure a flow of future federal subsidies if they enter before
the PTC expires, but they forego better and cheaper technology in the future. Upon entry,
there are two channels for wind farms to sell their capacity. The first channel is to negotiate
a long-term contract with a utility, in which they jointly decide the power purchase price and
the procured capacity. The second channel is to sell capacity to buyers other than utilities
such as corporations, or sign financial agreements such as merchant hedge contracts.

I assume time t is discrete at a yearly level, and denote a wind farm as i and a utility as
j. I divide the model into three modules: bilateral bargaining with utilities, demand from
non-utility buyers and buyer choice, and dynamic entry under policy uncertainty. For the
model, identification and estimation, as well as results, I present each component in parallel.

4.1 Bilateral Bargaining with Utilities

Profit function for utilities By procuring wind capacity kij from wind farm i, utility j

earn revenues from electricity generation and obtain renewable energy credits, and it pays
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procurement cost at the price pij in the power purchase agreement to the wind farm. I
define state as the geographical marketm and assume both electricity market and renewable
credit market to be competitive. Therefore, utility j is faced with retail electricity price rmt,
renewable credit price λmt, and the Renewable Portfolio Standards requirement zmt. If the
share of electricity generation using renewable energy falls short of zmt, utilities need to buy
renewable credits to fulfill the requirement; otherwise, they could sell renewable credits to
earn revenues. I suppress subscriptm for the remainder of the section.

Suppose utility j begins a power purchase agreement with wind farm i in year t for a
duration of T years.19 The profit function for utility j from this contract is

πU
t (pij, kij) =

t+T∑

s=t+1

Etβ
s−t{ (rs − pij)αikij︸ ︷︷ ︸

profit from elec. gen.

+λs(αikij −Qgap
jt )− hjs︸ ︷︷ ︸

profit from renewable credits

}.

Profit flow starts from year t + 1 as it takes one year on average between finalizing
investment decision and starting production for wind farms. I assume the production func-
tion for wind farm i as αikij , where αi is the annualized capacity factor.20 Moreover, Qgap

jt

is calculated as the difference between renewable energy generation required by the state
(zmt× utility j’s total output) and existing renewable energy generation, which measures
the demand for extra renewable credits. I assume utilities have perfect foresight of the state-
level Renewable Portfolio Standards zt, and they hold rational expectations with respect to
the transition dynamics of electricity price rt and renewable credit price λt.

hjt represents the hassle cost which captures frictions in the renewable credit market
as well as dynamic credit banking incentives. This hassle cost is a quadratic function of
Qgap

jt such that hjt = δ × (Qgap
jt − αikij) × Qgap

jt . The quadratic functional form fits the
data pattern that utilities further away from the state-level goal tend to procure more wind
capacity as illustrated in Panel (a) of Figure 5. Moreover, the hassle cost is attenuated by
procuring wind capacity kij , which reduces hjt more especially if the utility is further away
from the state-level requirement.

Profit function for wind farms The profit that wind farm i receives equals the sum of
19t denotes the year when negotiation happens, which I assume to be determined in the dynamic entry

decision. Consequently, for each pair of bargaining, t is predetermined.
20The linear functional form fits data well as shown in Appendix Figure A9. Moreover, I find that capacity

factors evolve systematically with the cohort, but display limited variation with respect to the age of wind
farms. Therefore, I treat the annualized capacity factor to be constant as a wind farm ages and calculate it at
the age of one for the best data coverage. More detailed discussion is in Appendix Section B.1.
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total revenues from power purchase agreements and total subsidies from the government,
minus turbine costs.

πW
t (pij, kij) =

β(1− βT )

1− β
pijαikij

︸ ︷︷ ︸
revenue from PPA

+
β(1− β10)

1− β
dtαikij

︸ ︷︷ ︸
PTC

− citkij.
︸ ︷︷ ︸

turbine cost

Wind farm i receives tax credit for the first ten years of its production and the amount of
tax credit per unit of wind energy generation is denoted by dt.21 Moreover, I parameterize
the turbine cost per unit of capacity cit such that cit = γ1Xit +

kij
2γ2

. I allow cit to depend
on a set of shiftersXit including average turbine prices and turbine brand dummies. I also
allow flexible convexity γ2 of total turbine cost with respect to the capacity.

Bilateral bargaining Wind farm i and utility j participate in the bilateral bargaining pro-
cess to negotiate over the procured capacity kij and the contracted price pij simultaneously.
The optimization problem can be formulated as follows.

max
kij ,pij

[πU
t (pij, kij)− πU

t (pij = ∞)]ρ × [πW
t (pij, kij)− πW

t (pij = ∞)]1−ρ.

ρ denotes the bargaining weight of utilities. πU
t (pij = ∞) represents the profits that util-

ities would obtain with their current energy portfolios if the negotiation fails, and πW
t (pij =

∞) represents the payoffs that wind farms would earn from waiting for another year to en-
ter. Under the assumption of Nash bargaining, the optimal capacity maximizes the gains
from trade, while the optimal price divides the gains between two parties.

The optimal capacity follows equation (1). If wind energy is more valuable due to ei-
ther higher electricity prices (rs) or renewable credit prices (λs), or lower shares of existing
renewable capacity compared with the state-level Renewable Portfolio Standards require-
ment (Qgap

js ), utilities are willing to paymore for additional wind capacity. The optimal wind
capacity equalizes the marginal benefit from utilities’ willingness to pay and the marginal
cost of wind capacity net of the PTC. ξijt denotes unobserved demand and cost shocks.

21My model also considers the availability of the Section 1603 Grant between 2009 and 2012 and assumes
the subsidy choice is exogenous, since the profit variation under either subsidy type is an order of magnitude
smaller than the variation across different wind farms. Moreover, I incorporate an 85% value discount for
a one-dollar tax credit compared to a one-dollar cash grant following Johnston (2019), which accounts for
transaction costs, asymmetric information problems, and market power issues.
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(
t+T∑

s=t+1

Etβ
s−t[rs + λs(1− zs) + δQgap

js ])

︸ ︷︷ ︸
willingness to pay

αi = γ1Xit +
k∗ij
γ2

︸ ︷︷ ︸
turbine cost

− β(1− β10)

1− β
dtαi

︸ ︷︷ ︸
PTC

+ξijt. (1)

Moreover, the optimal price follows equation (2). If the utility has a larger bargaining
power ρ, the negotiated price will be low enough to only cover turbine costs net of govern-
ment subsidies. If the wind farm has a bigger bargaining power, the negotiated price will
be closer to the willingness to pay for utilities. Higher outside option πW

t (pij = ∞) gives
wind farms better bargaining positions and increases the negotiated price.

β(1− βT )

1− β
p∗ij = (1− ρ)×

t+T∑

s=t+1

Etβ
s−t[rs + λs(1− zs) + δQgap

js ]

︸ ︷︷ ︸
willingness to pay

+ ρ× [
cit
αi

− β(1− β10)

1− β
dt

︸ ︷︷ ︸
turbine cost net of PTC

+
πW
t (pij = ∞)

αik∗ij︸ ︷︷ ︸
bargaining leverage

].

(2)

4.2 Demand of Non-Utility Buyers and Buyer Choice

Demand of non-utility buyers An alternative channel for selling wind capacity is to sell
to non-utility buyers such as corporations or to sign merchant hedge contracts. Due to a
lack of data on the characteristics of both corporate buyers and these financial contracts, I
model this second channel using a linear demand curve. I assume non-utility buyers demand
capacity knu

i at wind energy price pnui from wind farm i. The demand function is

knu
i = −ζ1pnui + ζ2αi + ζ3Xi + ζ4Z

nu
i + υi. (3)

Similar to equation (1),Xi includes average turbine prices and turbine brand dummies.
Znu

i denotes a set of demand shifters including dummies for balancing authorities and con-
tract types (long-term contracts with corporate buyers or merchant hedge contracts). υi
represents unobserved demand shifters. The profit function of wind farms that sell capacity
to non-utility buyers is denoted as πnu

t (knu
i , pnui ).

Buyer type choice and utility matching Wind farms choose which channel to sell wind
capacity, and if they decide to sell capacity via utility power purchase agreements, which
utility to be matched with. I model the choice of whether to sell capacity to non-utility buy-
ers as a random variable following a binary distribution with mean µm that varies across
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markets. If the realized value of this random variable equals zero, which indicates that wind
farm i chooses to negotiate a utility power purchase agreement, it will choose which utility
to be matched with. I define the potential buyers Jit as those utilities that had signed agree-
ments before 2019 and are within 400 miles from the focal wind farm i. Those potential
buyers differ in the renewable portfolio gaps and the distances from the wind farm Distij ,
and some of them might even be located in a different state from the focal wind farm. I use
mi andmj to represent the state of wind farm i and utility j respectively. The choice of the
matched utility is formulated as follows.

max
j∈J it

πW
t (p∗ij, k

∗
ij)︸ ︷︷ ︸

profits from bargaining

− (γ3 {mi ̸= mj}+ γ4Distij)︸ ︷︷ ︸
matching cost

+σϵij. (4)

I use πW
t (p∗ij, k

∗
ij) to denote the profit for wind farm i with each potential buyer j via

bilateral bargaining. I assume the matching cost depends on whether wind farm i and utility
j are in the same state and how far away they are. ϵij denotes the i.i.d. random shock
following the extreme value type I distribution. The standard deviation of the error term is
σ. Consequently, the optimal probability of choosing j∗ can be defined as follows.

P buyer
it (j = j∗) = (1− µm)×

exp[
πW
t (p∗ij∗ ,k

∗
ij∗ )−γ3 {mi ̸=mj∗}−γ4Distij∗

σ ]
∑

j∈Jit

exp[π
W
t (p∗ij ,k

∗
ij)−γ3 {mi ̸=mj}−γ4Distij

σ ]
. (5)

The ex-ante profit function πit of wind farm i, if it enters the market in year t, would be
defined as equation (6), where κ represents Euler’s constant.

πit =µm × πnu
t (knu

i , pnui ) + (1− µm)× σ×

{log[
∑

j∈Jit

exp(
πW
t (p∗ij, k

∗
ij)− γ3 {mi ̸= mj}− γ4Distij

σ
)] + κ}.

(6)

4.3 Dynamic Entry under Policy Uncertainty

4.3.1 Potential Entrants and Dynamic Entry Decision

Wind farm investors need to enter the interconnection queue, get approved by several stud-
ies, and sign interconnection agreements before they are eligible to enter the market.22

22As pointed out by Fan and Xiao (2015), it’s crucial to model potential entrants as long-run players
and incorporate the identities of potential entrants to recover the distribution of the entry cost in the optimal
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Therefore, I define projects that have been in the interconnection queue for two or more
years as the set of potential entrants and model their optimal entry decisions.23

At the beginning of year t, potential entrant i incurs entry cost ψit, where ψit = κWit +

νit. Wjt denotes the observed entry cost shifter. νit is an i.i.d. entry cost shock, which
follows an exponential distributionF (νit) = 1−e−

νit
φ with a mean parameter φ. If potential

entrant i decides to enter, I define the net profit of entry as Πit = πit − κWit.

Potential entrant i conditions on a vector of state variables sit for the dynamic decision,
including shifters for buyers’ willingness to pay, turbine technology, turbine cost, subsidy
level, and entry cost shifter Wjt. Another important state variable is the policy status ωt,
which is a dummy variable that equals one if the federal subsidy is present in year t, and
zero if the federal subsidy is absent in year t. ωt is always one ex post as the PTC was
always extended, and it shifts all the contract terms as well as the profit of wind farms Πit.
I denote Vt(sit,ωt, νit) as the value function of wind farm i in year t, defined as follows.

Vt(sit,ωt, νit) = max{ Π(sit,ωt)− νit,︸ ︷︷ ︸
net profit of entering today

βEt[Vt+1(sit+1,ωt+1, νit+1)|sit,ωt]︸ ︷︷ ︸
option value of waiting

}. (7)

If the net profit of entry in year t exceeds the option value of waiting, potential entrant
i will choose to enter the market in year t. Otherwise, it will wait for one more year and
face the same decision again next year. The option value of waiting depends on the distri-
bution of unobserved entry cost shock F (νit) and the transition dynamics of state variables
G(sit+1|sit) such that

Et[Vt+1(sit+1,ωt+1, νit+1)|sit,ωt] =
!

Et[Vt+1(sit+1,ωt+1, νit+1)|ωt]dG(sit+1|sit)dF (νit+1).

Moreover, the option value of waiting depends crucially on an ex-ante belief for the
policy evolution, denoted by bt(ωt+1|ωt) ∈ [0, 1]. I allow the policy to be extended only
year by year, and bt(ωt+1|ωt) can vary by time to capture that wind farm investors form
different policy beliefs depending on the actions taken by the government as well as other

stopping problem, like the one studied in this paper.
23For example, PJM has one of the most congested interconnection queues, and the minimum and max-

imum time between entering the queue and obtaining an interconnection agreement are 2.3 and 2.5 years
respectively in 2010, according to the PJM website. Anecdotes suggest that a typical project completed in
2008 spent fewer than two years in the queue for interconnection approval compared to three years in 2015,
according to the news from Utility Dive.
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political and economic shocks.24 The option value of waiting can be further expanded as
follows, and bt(ωt+1|ωt) is the source of non-stationarity in this dynamic problem.

Et[Vt+1(sit+1,ωt+1, νit+1)|ωt] = Vt+1(sit+1,ωt+1 = 1, νit+1)× bt(ωt+1 = 1|ωt)

+ Vt+1(sit+1,ωt+1 = 0, νit+1)× bt(ωt+1 = 0|ωt).

I denote the entry decision as a dummy variableEit and the entry probability asPE
t (sit,ωt).

Since the PTC shifts up firm values such thatVt+1(sit+1,ωt+1 = 1, νit+1) > Vt+1(sit+1,ωt+1 =

0, νit+1), if potential entrants believe there is a low possibility of policy renewal, the option
value of waiting would be small and potential entrants are more likely to enter this year.

PE
t (sit,ωt) = Pr(Eit = 1) = 1−exp(−Π(sit,ωit)− βEt[Vt+1(sit+1,ωt+1, νit+1)|sit,ωt]

φ
).

(8)

4.3.2 Belief Structure

Since the dynamic problem extends over an infinite horizon, potential entrants need to form
beliefs about the entire sequence of future policy status {bt(ωt+s+1|ωt+s)}∞s!0. Moreover, if
policy belief is permitted to be fully flexible, including examples such that perceived future
subsidies switching between on and off, infinite streams of policy beliefs could rationalize
one single investment decision. Therefore, I impose two assumptions to discipline policy
beliefs and make the problem feasible for estimation.

Assumption 1 (absorbing state) b(ωt+1 = 0|ωt = 0) = 1.

Assumption 1 indicates that the policy is perceived as terminated once paused. If the
policy is absent in year t, wind farm investors will hold the belief that the policy is termi-
nated forever. This assumption is consistent with the reality that the Section 1603 Grant
was discontinued after 2012 and hasn’t been rebooted ever since. Under this assumption,
Et[Vt+1(sit+1,ωt+1, νit+1)|ωt = 0] = Vt+1(sit+1,ωt+1 = 0, νit+1). Consequently, the value
function Vt(sit,ωt = 0, νit) doesn’t depend on time-varying beliefs and can be simplified
as a stationary function V 0(sit, νit). I further denote Π(sit,ωt = 0) as Π0(sit), which leads
to the following Bellman equation.

24In reality, the PTC could be announced with a window longer than one year, such as between 2010 and
2012. However, considering different lengths of policy windows introduces another layer of uncertainty and
further complicates the model. Therefore, I allow the policy to be extended only year by year for simplicity.
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Vt(sit,ωt = 0, νit) = V 0(sit, νit) = max{Π0(sit)− νit, βE[V 0(sit+1, νit+1)|sit]}. (9)

Assumption 2 (simple forecast) bt(ωt+s+1 = 1|ωt+s = 1) = bt(ωt+1 = 1|ωt = 1) =

bt, s ! 0.

Assumption 2 indicates that the perceived likelihood of a one-year policy extension
will be perceived to apply to future years, which precludes the cases that wind investors
have more information about future policy extensions beyond the next year. However, I
allow the beliefs to change across years and the investors to revise their beliefs according
to new information. Consequently, bt(ωt+s+1 = 1|ωt+s = 1) and bt+s(ωt+s+1 = 1|ωt+s =

1) could be different to reflect unanticipated shock realized in year t + s. bt(ωt+1|ωt) is
henceforth an index that summarizes the policy uncertainty faced by wind farm investors in
year t. Instead of imposing Assumption 2, the belief evolution could be parameterized as
a first-order Markov process, but a relatively short time series prohibits such endeavor. An
alternative policy belief model will use a mixture distribution as described in the Appendix
Section C. However, without underlying time-varying beliefs, this model cannot rationalize
the jumping bunching patterns in the investment time trend; with underlying time-varying
beliefs, this alternative model is essentially isomorphic to the baseline model.

I denote Π(sit,ωt = 1) as Π1(sit) and Vt(sit,ωt = 1, νit) as V 1(sit, νit; bt). Un-
der Assumption 2, V 1(sit, νit; bt) solves the following Bellman equation (10), which nests
V 0(sit, νit) solved from Bellman equation (9).

V 1(sit, νit; bt) = max{Π1(sit)− νit, β{Et[V
1(sit+1, νit+1; bt)|sit]× bt+

E[V 0(sit+1, νit+1)|sit]× (1− bt)}}.
(10)

4.3.3 State Space, Transition, and Equilibrium

I include three sets of variables in the state space sit to capture the rich interactions among
government policies, turbine technology, and utility demand in determining the profit of
entry as well as the option values of waiting. The first set of state variables are time-varying
and exogenous, including the annual average productivity of wind turbines ᾱt, the average
turbine prices TPVestast , the subsidy levels dt, and the prevailing market price rt and λt.25 I
assume potential entrants’ beliefs about these state variable transitions as AR(1) models.

25I use the annual average productivity of wind turbines ᾱt instead of realized productivity for each indi-
vidual wind farm to ease concerns of the selection issue.
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The second set of state variables are time-invariant and exogenous. I construct a predicted
utility demand using time-invariant shifters in equation (1), and predicted matching cost
shifters from equation (4). I project pnui on Znu

i as in equation (3) to construct another
time-invariant state variable for the demand of non-utility buyers.

The third set of state variables are time-varying and endogenous, which measure the
changing renewable portfolio gaps of utilities in the buyer pool. As each wind farm has
18 buyers on average in its choice set, keeping track of the renewable portfolio gap for
each individual utility is computationally challenging. Motivated by Gowrisankaran and
Rysman (2012) and Hendel and Nevo (2013), I use inclusive values for wind farms that can
be attributed to the changing renewable portfolio gaps for buyers, denoted by Φit.

Φit = πit({Qgap
jt }j∈Jit)− πit({Qgap

jt = 0}j∈Jit).

The inclusive values Φit is the difference in the ex-ante profit functions from equation
(6) with and without the realized renewable portfolio gap for each utility. The transition of
Φit is endogenous in the model because the renewable portfolio gaps of utilities shrink after
they procure additional new wind capacity. Therefore, more entries of wind farms today
will reduce future values of Φit. I model the transition process of it as an AR(1) process
with the amount of the one-year lagged new wind capacity online Kmt in the state m as
an endogenous shifter.26 It captures a preemptive incentive of wind farms such that they
would like to enter early to access buyers with a higher willingness to pay, counteracting
incentives to delay their entry for better and cheaper technology.

I adopt an equilibrium concept similar to themoment-basedMarkov Equilibrium (Ifrach
andWeintraub, 2017) and assume that each wind farm keeps track of its own states and mo-
ments of the industry states.27 This equilibrium concept is widely used in recent empirical
papers (Barwick, Kalouptsidi, and Zahur, 2021; Jeon, 2022; Vreugdenhil, 2023). The entry
decision satisfies equation (8) under the policy beliefs bt(ωt+1|ωt) and the transition dynam-
ics of state variablesG(sit+1|sit), while wind farms employ the equilibrium entry decisions
to form expectations about Φit andKmt.

26The one-year lag captures the gap between the entry of a wind farm and the start of its production.
27I assume that each wind farm is atomic and the impact of its action on the aggregate state variable is

negligible due to a low level of market concentration.
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4.4 Model Discussion

I close the section with brief discussions of the model assumptions. First, I only endogenize
the capacity of procured wind energy but abstract away responses of other fuel sources. The
wind penetration rate was low during my sample period in most states, and I assume the
responses of other fuel sources as exogenous to keep the model tractable. However, my
model still captures increasing gas power capacity, decreasing coal power capacity, and
decreasing gas prices, mainly through utilities’ willingness to pay for wind capacity which
subsumes the evolution of electricity prices and renewable portfolio gaps.

Second, I assume that policy uncertainty does not directly influence bargaining terms. I
find little evidence of discontinuity in the average capacity (Appendix Figure A4) or nego-
tiated prices (Appendix Figure A10) for wind farms that began construction in 2011. This
suggests that the impact of policy uncertainty on profits from investment is relatively minor
compared to its effect on entry timing decisions.

Third, I model the matching between wind farms and utilities as a discrete choice of
buyers for wind farms, but abstract away utilities’ decisions. I assume utilities are myopic
and their choices of when to procure wind capacity are exogenous. Since wind turbine
productivity and unfulfilled demand of utilities are complements in generating total profit,
a one-sided discrete choice based on profits from each potential pair ofmatching is sufficient
to capture these complementarities.

Fourth, I assume that turbine technology and price are exogenous to investment in the
U.S. wind industry. The cumulative wind power capacity in the U.S. represents 16% of
the global wind power fleet, and there is no observed trend break in either turbine tech-
nological advancements or turbine prices following the surge of U.S. investments (Figure
4). I conduct a robustness check in Section 7.1 to quantify potential bias from ignoring the
learning-by-doing effects, following Covert and Sweeney (2022).

5 Identification and Estimation

I discuss how data variations identify the model and how estimation procedures recover
model parameters in this section. I start with key primitives including the turbine cost func-
tion, utilities’ bargaining power parameter, the demand function for non-utility buyers, as
well as the matching cost in utility choices. I then discuss how to identify and estimate
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model primitives in the dynamic part, including parameters governing the entry cost distri-
bution and the policy beliefs.

5.1 Bilateral Bargaining with Utilities

There are two key equations from the bilateral bargaining problem: optimal capacity func-
tion (1) and optimal pricing function (2), which I jointly estimate via non-linear least squares.28

In the optimal capacity function, I include the average turbine price of Vestas, TPVestast and
its interactions with turbine brand dummies (GE, Vestas, Siemens Gamesa, and others) in
Xit as main shifters in the turbine cost function. I further control a set of demand shifters,
including dummies of the states of the utility, utility types, as well as contract duration inter-
vals.29 Conditional on this rich set of controls, ξijt mainly captures measurement errors in
the willingness to pay and turbine costs, and is assumed exogenous to the observables. The
cost convexity γ2 is identified by the effect of the unit subsidy on the negotiated capacity.
If total turbine cost is steeper in capacity, utilities and wind farms will negotiate a smaller
wind farm size in response to a subsidy increase. Moreover, the hassle cost coefficient δ is
identified from the relative importance of renewable portfolio gaps Qgap

js to market prices.
In the optimal pricing function, I assume πW

t (pij = ∞) as the payoff that wind farms
would have earned from waiting for another year to enter and selling capacity to a utility
from the rest of the potential buyer pool. I find that conditional on all other observables
in equation (2), the residual variation in negotiated prices is positively correlated with the
average willingness to pay from nearby alternative utilities, which gives a better bargaining
position for the wind farm (Panels (a) and (b) of Appendix Figure A10). Moreover, the
average p∗ij displays a large variation across cohorts (Panel (c)). Motivated by these data
facts, I express πW

t (pij = ∞) as a flexible control function with quadratic bases of the
average willingness to pay from nearby alternative utilities as well as year fixed effects.

The key parameter in the optimal pricing function (2) is the bargaining parameter ρ. The
identification of ρ comes from the relative pass-through ratios of utility willingness to pay
and net turbine cost per unit on the negotiated price. If the utility has a larger bargaining
power ρ, the negotiated price tends to be low and co-moves closer to the net turbine cost,
after flexibly controlling for bargaining leverages.

28A more detailed description of the estimation can be found in Appendix Section B.
29The utility types include cooperative, investor-owned, or others. The term length intervals include three

groups: less than 15 years, 15-20 years, or more than 20 years.
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5.2 Demand of Non-Utility Buyers and Buyer Choice

Demand for non-utility buyers I estimate the linear demand function for non-utility
buyers (3) with instruments. As υi captures unobserved demand shifters, it’s correlated with
price pnui , which introduces bias to price coefficient ζ1. I use three sets of instruments to
tackle the identification challenge. The first instrument is the renewable credit price in each
state. As renewable credit is a product of the Renewable Portfolio Standards which targets
utilities, its price is less likely to be correlated with demand shifters for non-utility buyers
who constitute a smaller segment of the total demand. The second instrument is the average
land price. As the locations of wind farms are exogenously given in the model, land prices
are orthogonal to the demand shifters for non-utility buyers, but might be incorporated into
the wind energy price for wind farm investors to break even. The third set of instruments
are dummy variables indicating whether a state implemented property tax incentives, sales
tax incentives, or other wind power recruitment policies. These policies are implemented
by the state government to boost renewable energy. As non-utility buyers demand no more
than 30%of total wind capacity, these supply-side policies are unlikely to be correlated with
their unobserved demand shocks.

Buyer type choice and utility matching I back out matching cost coefficients γ3 and γ4,
the scale parameter σ, and the mean parameters of the buyer type choice µm from estimating
the buyer choice problem (5) via MLE. I allow µm to vary across Texas, Illinois, New York,
and the rest of the states, as the former three states are major markets where non-utility
contracts prevail. The standard deviation of the error term σ is identified as themagnitude of
the residual variation in the utility choice that cannot be explained by the profit gap between
choosing the matched utility j∗ and an alternative utility. The matching cost coefficients γ3
and γ4 are identified by the gradients of matching likelihood with respect to the matching
cost shifters. The mean parameters of the buyer type choice µm are pinned down by the
frequency of non-utility contracts observed across markets.

5.3 Dynamic Entry under Policy Uncertainty

The primary identification challenge in the dynamic model is to separate the parameters of
the entry cost distribution (κ and φ) from the policy belief parameters bt. The main iden-
tification strategy is to exploit the temporal structure of the policy. I leverage the fact that
the Consolidated Appropriations Act was announced to cover from 2015 to 2019. More-

27



over, the government also included a two-year safe harbor window in 2013 and extended
that to four years in 2016, which effectively softened the requirements from subsidy expi-
ration dates and reduced the incentives for wind farms to rush into the market. The stable
investment trend between 2013 and 2018 in Figure 3 contrasts the jumping trend in earlier
years, providing further support that the policy environment was largely stable in this pe-
riod. Therefore, I assume that there is no policy uncertainty in the later period of the sample,
and the entry rates pin down the parameters of entry cost distribution κ and φ given bt = 1.
Additionally, conditional on the entry cost as well as the transition process of state vari-
ables (turbine technology, turbine price, and utility demand), the bunching of investment in
earlier deadline years would identify belief parameters bt.

Following the identification strategy, I take two steps to estimate the dynamic model.
First, I focus on the time period between 2014 and 2018 when there was no policy uncer-
tainty with bt = 1 to estimate entry cost parameters by matching model-predicted entry
rates with the data. I use the time period between 2013 and 2018 as a robustness check.
The stationary dynamic programming problem can be formulated as follows.

V (sit, νit) = max{Π(sit)− νit,
!

βV (sit+1, νit+1)dG(sit+1|sit)dF (νit+1)}.

I approximate the profit surface as a function of the quadratic basis of the state space
ul(sit) following Gowrisankaran, Langer, and Zhang (2024). I solve the dynamic program-

ming problem via value function approximation V (sit) =
L∑
l=1

γvl ul(sit), similar to Sweeting

(2013) and Barwick and Pathak (2015). Moreover, I include the annual state-level land price
as the entry cost shifter Wit to capture the time trend in the entry cost. I solve entry cost
parameters κ and φ by matching the model-predicted state-level entry rate with the data
where Nmt is the number of entrants in statem and year t from the data.

{κ,φ} = argmin
∑

mt

(P̂E
mt − PE

mt)
2, where P̂E

mt = [
Nmt∑

i=1

P̂E
t (sit,κ,φ)]/Nmt.

Second, I focus on policy windows with expiration to estimate policy belief parameters.
I use the estimated entry cost parameters to solve the upper bound and lower bound of
the continuation value. The value function when the PTC is certain to be terminated is
the lower bound of continuation values, approximated as V 0(sit, bt) =

L∑
l=1

γv0l (bt)ul(sit)

28



following equation (9).30 For the upper bound of continuation values, I approximate it as

V 1(sit, bt) =
L∑
l=1

γv1l (bt)ul(sit). For each given guess of policy belief parameter bt, I solve

{γv1l }Ll=1 from equation (10). I allow the belief of the transition dynamics for endogenous
state variable Kmt and Φit to adjust in the equilibrium according to the policy belief bt.
A lower bt induces a substantial amount of new wind capacity online, thereby reducing
utilities’ future renewable portfolio gaps more sharply. I solve for bt year by year to match
the model-predicted state-level entry rate with the data. The model-predicted entry rate is
as follows.

P̂E
t (sit) = 1− exp{−Π̂(sit)− κ̂Wit − β[V̂ 1(sit, bt)× bt + V̂ 0(sit, bt)× (1− bt)]

φ̂
}.

The policy belief bt is the solution to the following optimization problem. For more
details of the dynamic estimation, please refer to the Appendix Section E.

bt = argmin
∑

m

(P̂E
mt − PE

mt)
2, where P̂E

mt =

Nmt∑
i=1

P̂E
t (sit, bt)

Nmt
.

6 Results

6.1 Bilateral Bargaining with Utilities

Panel A of Table 1 presents the estimation results of the bilateral bargaining model. The
estimated hassle cost parameter δ is positive, which captures the incurred frictions for utili-
ties to participate in the renewable credit market, as well as the dynamic incentives of credit
banking that I don’t explicitly model. For cost parameters, the total capacity cost is convex
in the procured capacity as γ2 is estimated to be positive. Therefore, it would be dispro-
portionately more costly to construct a larger wind farm, since the challenges to transport,
install, operate, and maintain wind turbines escalate with taller towers and longer blades.
Moreover, I find higher turbine prices significantly reduce the negotiated capacity.

I estimate the bargaining weight ρ of utilities to be approximately 0.67. Therefore,
utilities capture two thirds of the gains from trade when bargaining. ρ is also significantly
different from 1, suggesting that the change in the PTC will not be perfectly passed through

30For a given guess of bt, the lower bound V̂ 0(sit, bt) will also depend on bt through the transition dy-
namics ofKmt and Φit solved in the equilibrium.
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to the negotiated price. Moreover, assuming a take-it-or-leave-it model and imposing full
rent extraction by utilities will underestimate the importance of the PTC to the industry. I
leave out the controls for πW (pij = ∞) in the robustness check, which essentially assumes
that the threat point is zero for all wind farms. The bargaining weight estimate decreases by
about 10% and the rest of the estimation results are stable, which illustrates the robustness
with respect to the assumptions about the threat points.

Table 1: Parameter Estimates for Bargaining, Non-utility Demand, and Buyer Choice

Coefficient Parameter Estimate S.E.
Panel A: Parameters of Bilateral Bargaining

Hassle Cost δ 5.502 (2.557)
Turbine Price γ1 -0.071 (0.008)
Unit Capacity Cost Convexity γ2 0.116 (0.012)
Bargaining Weight ρ 0.671 (0.023)
Panel B: Parameters of Demand for Non-Utility Buyers

Price Coefficient, OLS ζ1 -0.770 (0.107)
Price Coefficient, IV ζ1 -0.923 (0.238)
Panel C: Parameters of Utility Matching and Buyer Type Choice

Matching Cost, Different States µ1 0.087 (0.010)
Matching Cost, Distance µ2 0.186 (0.032)
Scale of ϵijt σ 0.042 (0.004)
Non-utility Probability ζ3 0.243 (0.019)
Non-utility Probability, Texas ζ3,TX 0.795 (0.033)
Non-utility Probability, Illinois ζ3,IL 0.541 (0.082)
Non-utility Probability, New York ζ3,NY 0.950 (0.049)

Notes: This table shows the estimation results of the bilateral bargaining model (equations (1) and (2)), the
linear demand curve for non-utility buyers (equation (3)), and the utility matching and buyer type choice
(equation (5)). Standard errors are in parentheses.

I calculate the discounted sum of profit πW
ij for each wind farm and construct the coun-

terfactual negotiated price p∗ij(dt = 0) and the discounted sum of profit πW
ij (dt = 0) in the

absence of the subsidy, as shown in Figure 6. The discounted sum of profit πW
ij is 89.6 mil-

lion dollars on average, 124.5 million dollars at the 75th percentile, and 172.1 million dollars
at the 90th percentile. Only 1.9% of wind farms earn a negative profit. When the PTC is
removed, bilateral bargaining yields a lower negotiated capacity, but a higher negotiated
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Figure 6: Estimated Profit and Price w/o PTC
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Notes: This figure shows the distributions of profits and negotiated prices w/o the PTC being present.

price. The negotiated price without the PTC p∗ij(dt = 0) is 9.0% higher compared with
p∗ij . I assume that a negative negotiated capacity will lead to the failure of the bargaining.
About 22.4% of wind farms will fail or earn a negative profit (I normalize as zero profit)
without the PTC, underscoring the critical role of this federal incentive in supporting the
industry. Even for wind farms earning positive profits, πW

ij (dt = 0) on average is 47.0%
smaller than πW

ij . This result highlights the significant cost of missing deadlines and los-
ing PTC eligibility, explaining the rushed entry given low perceived likelihood of the PTC
extension.

6.2 Demand of Non-Utility Buyers and Buyer Choice

The estimation results of the demand function for non-utility buyers are shown in Panel
B of Table 1. The OLS estimate of the price coefficient ζ1 is -0.770. I use three sets of
instruments to deal with the endogeneity issues associated with the wind price: the renew-
able credit price in each state, the annual agricultural land price at the state level, dummy
variables indicating the presence of state tax incentives. I present the IV estimate using
only the renewable credit price for utilities as the baseline and discuss the results using dif-
ferent combinations of instruments in Appendix Section D.1. The IV estimate of the price
coefficient is larger in magnitude than the OLS result by approximately 20%, and the esti-
mated average elasticity is -1.6. There is a sparse reference for the demand elasticity in the
wind capacity, but the magnitude roughly aligns with the previous estimates in the liquefied
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natural gas industry (Zahur, 2022) and solar panel industry (Gerarden, 2023).
I further estimate the utility matching model and the buyer type choice model as shown

in Panel C of Table 1. The matching cost between a wind farm and a utility is much larger if
they are located in different states. The matching cost also increases with their geographical
distance. Being in different states is equivalent to increasing the distance by 470 miles on
average in raising the matching cost. The estimated scale of choice-specific random shock
is 0.042, which is equivalent to 54.7% of the average profit from bilateral bargaining. The
mean likelihood of selling capacity to a non-utility buyer is approximately 24.3%. However,
this probability is much larger in Texas, Illinois, and New York, as these markets are where
the merchant hedge contracts concentrated geographically.

6.3 Dynamic Entry under Policy Uncertainty

I present the estimation results for dynamic parameters in Table 2. Column (1) uses the
policy window between 2013 and 2018 to estimate entry cost parameters, and column (2)
use the policy window between 2014 and 2018, which I use as the baseline result. The
mean parameter φ of the entry cost distribution is estimated to be 290.9, and thus the mean
entry cost conditional on entry is simulated to be approximately 35 million dollars. The
total investment cost net of turbine cost averages 42 million reported by a group of wind
farms between 2009 and 2012, aligning closely with my estimate.31 Moreover, I include
the average demeaned state-level annual agricultural land price as Wit. The coefficient µ
is estimated to be positive. Therefore, higher land price exacerbates the entry cost for new
wind farms, which accounts for 53%-70% of the total entry cost.

Next, I use the estimated cost parameters to solve the dynamic programming problem
during the policy windows when there is policy uncertainty and estimate the policy be-
lief parameters. The results are presented in Panel B. The average perceived probability
of policy renewal is about 0.3 for the 2011 cohort due to the pessimism about the policy
extension as well as the delayed policy renewal. The low estimate is also consistent with
the investment spike observed in the raw data. The average perceived probability of policy
renewal for the 2012 cohort recovers to 0.843 as policy uncertainty still hovered. The belief
parameters in other years are estimated to be close to 1, with the exception of 2006-2007,

31This is calculated from the Section 1603 Grant award record in which the award amount is 30% of the
total investment cost.

32



Table 2: Parameter Estimates for Dynamic Model

(1) (2)
Coefficient Parameter Estimate S.E. Estmate S.E.
Panel A: Entry Cost Parameters

Mean Entry Cost φ 324.201 (73.383) 290.865 (53.120)
Land Price κ 57.119 (26.900) 67.424 (28.676)
Panel B: Belief Parameters

Policy Belief 2006 b2006 0.540 (0.030) 0.583 (0.040)
Policy Belief 2007 b2007 0.731 (0.151) 0.758 (0.033)
Policy Belief 2008 b2008 0.995 (0.276) 0.999 (0.281)
Policy Belief 2009 b2009 0.852 (0.114) 0.930 (0.230)
Policy Belief 2010 b2010 0.920 (0.067) 0.925 (0.167)
Policy Belief 2011 b2011 0.230 (0.140) 0.322 (0.121)
Policy Belief 2012 b2012 0.768 (0.099) 0.843 (0.360)

Years without Uncertainty 2013-2018 2014-2018

Notes: This table shows the estimation results of the dynamic model. Column (1) estimates entry cost
parameters using the sample window between 2013 and 2018, while column (2) estimates entry cost
parameters using the sample window between 2014 and 2018. Standard errors for entry cost parameters are
block-bootstrapped 500 times, while standard errors for belief parameters are block-bootstrapped 50 times.

which might be due to more sparse investment as well as a larger extrapolation error when
estimating belief parameters in this early stage using entry cost parameters estimated from
a much later sample period.

I test the model fit by drawing the entry cost shocks randomly 100 times and simulating
the entry decision of wind farms, as shown in Appendix Figure A11. The model fits the
overall investment time trend and captures the investment spikes and dips well, although
it over-predicts entry in the early years. This is likely due to the lumpy nature of the wind
farm entry in specific markets while I impose a relatively restrictive entry cost structure in
the model.

7 Counterfactual Analysis

I present results for three sets of counterfactual exercises. The first exercise addresses the
main research question of how policy uncertainty affects dynamic market efficiency and so-
cial welfare. Given that the PTCwas consistently renewed ex post, I simulate the investment
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decisions under the scenario of certain policy renewal. I then compare the welfare changes
between the baseline scenario and the scenario without renewal uncertainty, decompose
the welfare consequences of policy uncertainty into various channels, and analyze effect
heterogeneity across states. The second counterfactual exercise involves further adjusting
the generosity of the PTC. As the PTC remained fixed in value (adjusted for inflation) un-
til 2016, I investigate how the welfare effects of policy uncertainty change under different
subsidy levels. The third counterfactual exercise explores the welfare effects of early reso-
lution of policy uncertainty. I simulate the investment decision when policy uncertainty is
resolved before and after wind farm investors make entry decisions, comparing the welfare
effects between these two scenarios while keeping the expected subsidy constant.

7.1 Effects of Policy Uncertainty on Investment and Welfare

I simulate the baseline scenario with the policy uncertainty, using the estimated belief pa-
rameters from Table 2, and a counterfactual scenario when there is no renewal uncertainty,
setting bt = 1. This counterfactual is policy-relevant, as maintaining a long-term policy is
the new direction in subsidy design (Bistline, Mehrotra, and Wolfram, 2023).32 Even under
rolling policy windows, announcing the policy renewal in advance of expiration can largely
mitigate the policy uncertainty, as the estimation results reveal limited policy uncertainty
in deadline years when there were no policy lapses.

I simulate the model between 2006 and 2018 and wind farm investors endogenously
adjust their expectations of the state variables. At the beginning of each year, a wind farm
draws a random entry cost from the estimated common distribution and decides whether
to enter in the current year. If a wind farm decides to wait, it returns to the pool of poten-
tial entrants and faces the same dynamic problem next year. The details of counterfactual
simulations can be found in Appendix Section E.

Investment Trajectory The baseline and counterfactual investment trajectories are shown
in Figure 7. Eliminating policy renewal uncertainty significantly delays the entry of wind
farms. The number of new wind projects in 2011 is reduced by 52.7% and the total new

32For example, the Inflation Reduction Act of 2022 extended the Production Tax Credit until 2025 and
committed to replace it with the Clean Electricity Production Tax Credit after 2025. More importantly, the
Clean Electricity Production Tax Credit will remain in place until at least 2032, or until U.S. greenhouse gas
emissions from electricity fall to 25% of the 2022 levels. For the Inflation Reduction Act of 2022, please see
a summary from the White House and from the EPA.
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capacity decreases by 5500 MW. Wind projects shift their entry to later years and the num-
ber of new wind projects between 2012 and 2018 increases by 24.1% on average annually.
Those delayed wind farms postpone their entry by 3.6 years and the average entry year of
all new projects between 2011 and 2018 is delayed by 0.7 years.33

Figure 7: Investment Trajectory with and without Policy Uncertainty
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Notes: This figure shows the investment trajectory with and without policy uncertainty. The gray dashed
line denotes the model-predicted new capacity under baseline policy uncertainty, while the red solid line
denotes the new capacity without policy uncertainty. The bottom panel shows the percentage change in the
number of new projects when policy uncertainty is removed compared to the baseline scenario.

Social Welfare I calculate the welfare impacts of policy uncertainty between 2008 and
2018. Policy uncertainty prompts earlier entry of wind farms and expedites the environmen-
tal benefits of reducing carbon emissions. However, policy uncertainty induces misalign-
ment among investment timing, technological advancement, as well as demand evolution,
which leads to efficiency loss. As shown in Panel A of Table 3, the numbers of total wind
projects are approximately the same, suggesting that removing policy uncertainty mainly
shifts the entry timing without changing the total number of entrants over an 11-year period.
However, the total capacity increases by 6.3% when policy uncertainty is removed and the
total output increases by 8.7%. As more investment occurs during the period with higher
turbine productivity and lower turbine price, investment timing aligns better with techno-

33The investment trajectory without policy uncertainty still displays a dip in 2012 mainly due to project
withdrawals from the queue in that year. It’s empirically challenging to further incorporate queue withdrawal
decision in the current structural model and the welfare conclusion is likely to be conservative.
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logical advancement. Moreover, utilities with unfulfilled demand are able to procure more
wind capacity under better technology. Consequently, the total capacity and output both
increase despite similar numbers of wind projects, as illustrated in Appendix Figure A12.

I calculate the profit of wind farms on the market in Panel B of Table 3. Although there
is more wind capacity, the total turbine cost increases only slightly by 1.5% because the
new entry timing takes better advantage of the decreasing turbine price. The entry cost is
also lower mainly due to a shift of the entry timing away from the peak average land price
in 2011. Total profit, calculated as the difference between the static profit Πit and the entry
cost, increases by 7.1%.

I evaluate the benefits of wind energy following Callaway, Fowlie, and McCormick
(2018). I assume wind farms operate for 20 years and calculate the discounted sum of
benefits. Wind energy substitutes fossil fuels in generating electricity and lead to three
sources of benefits on the grid: reducing carbon emissions, avoiding fossil input costs, and
adding capacity values to the system. I estimate the average marginal operating emissions
rate (MOER) of coal- or gas-fueled power plants in each state and year, which is defined
as the marginal response in system-wide emissions with respect to total production change
from generators due to more renewable energy.34 I assume the social cost of carbon to be
$80 per ton.35 The statistics of the avoided operating costs and capacity values are from
Callaway, Fowlie, and McCormick (2018).36

The cost and benefit analysis of policy uncertainty is presented in Panel (c) of Table
3. Total benefits increase by 5.8 billion dollars, a 5.2% increase compared to the baseline.
Although the benefit could only be harvested later due to the delayed entry, a rise in total
output dominates the cost of waiting. Among 5.8 billion dollars in total benefit gain, 60%
are from the reduced carbon emission. If I take a more conservative estimate of the social
cost of carbon as $50 per ton, the total benefits increase by 4.6 billion dollars compared
to the baseline. The total subsidy increases by 5.2% as the PTC is based on total output.37

34Callaway, Fowlie, and McCormick (2018) find that regional average MOERs offer a useful means of
“calibrating regional policy incentives to compensate for external emissions benefits.”

35According to Brookings, the Obama administration estimated the social cost of carbon at $43 per ton
globally, while the Trump administration only considered the effects of carbon emissions within the United
States, estimating the number to be between $3 and $5 per ton. The Biden administration estimated the social
cost of carbon to be $51 per ton, but the EPA proposed a nearly fourfold increase to $190 in November 2022.
Borenstein, Fowlie, and Sallee (2021) use both $50 per ton and $100 per ton.

36More details can be found in the Online Supplemental Appendix.
37Note that the total subsidy increase is smaller in percentage than the output. This is because all the dollar

values are discounted to 2008, while the total quantity is a simple sum.
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The total profit in the market cannot fully justify subsidies as the net profit is negative, but
removing policy uncertainty reduces this deficit by 0.2 billion dollars. Moreover, the social
surplus from wind energy—calculated as total benefits minus turbine costs and entry costs
borne by wind farm investors, as well as the total subsidy—increases by 5.9 billion dollars
and 28.9% from the baseline.

Table 3: Outputs, Benefits and Costs with and without Policy Uncertainty

Baseline No Uncertainty Difference Percentage

Panel A: Output

Number of Projects 464.1 468.8 4.7 1.0%
Total Capacity (MW) 40191.3 42718.7 2527.5 6.3%
Total Output (106 MWh) 1598.5 1738.3 139.8 8.7%

Panel B: Profit (Billion USD)

Turbine Cost TC 43.4 44.1 0.6 1.5%
Entry Cost EC 32.6 31.0 -1.6 -4.9%
Total Profit TP 14.8 15.9 1.0 7.1%

Panel C: Benefit and Cost (Billion USD)

Total Benefit TB 113.1 119.0 5.8 5.2%
Environmental Benefit 68.4 71.9 3.5 5.1%
Others 44.7 47.1 2.4 5.3%

Subsidy S 16.5 17.3 0.9 5.2%
Net Profit TP-S -1.6 -1.5 0.2
Social Surplus TB-TC-EC-S 20.6 26.5 5.9 28.9%

Notes: This table shows the outputs, benefits, and costs in the wind industry between 2008 and 2018
comparing the scenario when the policy uncertainty is removed and the baseline scenario. All the dollar
values are discounted to 2008 with a discount factor of 0.95.

A potential concern regarding the welfare effect is the assumption that turbine technol-
ogy is exogenous as discussed in Section 4.4. However, removing policy renewal uncer-
tainty delays the average entry year of new projects from 2011 to 2018 by only 0.7 years.
Combined with the fact that the turbine market is global and the U.S. held a 16% share of cu-
mulative capacity in 2019, the impact of the learning-by-doing channel is likely secondary
in the welfare calculation. A back-of-the-envelope calculation using the upper-bound es-
timate of the learning parameter from Covert and Sweeney (2022) indicates that, even ac-
counting for slower technology improvement, the social surplus effect would decrease by
less than 10%, leaving all the qualitative results unchanged.
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Effect Decomposition The total benefit from removing policy uncertainty increases by
5.8 billion dollars as well as 5.2% compared to the baseline. There are three channels shap-
ing this outcome: the delayed environmental benefits reduces the total benefit, which is
counteracted by the improvement of timing alignment between investment and technology,
as well as the matching efficiency gain between utilities and wind farms. The decomposi-
tion results are shown in Appendix Figure A13. Removing policy uncertainty delays the
entry of wind farms as well as the total benefits of wind energy. However, the negative ef-
fect can be completely offset by a better timing alignment between investment and technol-
ogy. Moreover, the matching efficiency gain between utilities and wind farms contributes
roughly 30% compared to the welfare effect from timing alignment.

Effect Heterogeneity I explore the heterogeneity in the welfare consequences across
states and find some suggestive evidence that the social surplus increases more in states
with larger wind demand or more generous state-level supports. As shown in Appendix
Figure A14, the improvement in social surplus from removing policy uncertainty is more
pronounced in states with greater unfulfilled demand for utilities (Qgap

jt ) or demand shifters
(β4ZU

jt). Moreover, the change in the social surplus from removing policy uncertainty is
also larger in states with stricter Renewable Portfolio Standards or more generous state-
level subsidies. One interpretation is that state subsidies are complements to federal tax
incentives. Wind energy will benefit more from stable federal subsidies in those states that
also provide state subsidies, as state policies make it easier for wind farms to expedite entry
and thus they are more responsive to federal policy uncertainty.

7.2 Effects of Policy Uncertainty under Various Subsidy Levels

I investigate how the welfare effects of policy uncertainty vary under different subsidy lev-
els. The government set policy windows of the PTC and decided when to renew the subsidy,
but held the generosity of the PTC constant until 2016. However, alternative subsidy levels
might yield better social surplus under policy uncertainty. Keeping the belief parameters
as they are for other years, I simulate market outcomes by setting the belief parameter in
2011 to 0 (most uncertain about renewal), 0.4 (baseline), and 1(most certain about renewal)
while varying the subsidy levels from $16/MWh to $28/MWh. I calculate the social surplus
of wind energy in each scenario, and the results are summarized in Figure 8.

Overall, the social surplus of wind energy increases with the level of subsidy but de-
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Figure 8: Welfare Effects of Policy Uncertainty under Various Subsidy Levels
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Notes: This figure shows the welfare effects of policy uncertainty under various subsidy levels. I keep the
belief parameter as it is for other years, and simulate the market outcomes by setting the belief parameter in
2011 to 0 (most uncertain), 0.4 (baseline), and 1(most certain) when the subsidy levels vary from $16/MWh
to $28/MWh.

creases with the extent of policy uncertainty in 2011. In the baseline scenario, with a sub-
sidy level of $22/MWh and a 2011 policy belief parameter of 0.4, the social surplus is lower
than what could be achieved with a subsidy level of $18/MWh under full policy certainty in
2011. Without accounting for the subsidy itself, the social surplus in the baseline scenario
would still be lower than what could be achieved with a subsidy level of $20/MWh under
full policy certainty in 2011. Therefore, the subsidy level could be reduced by at least 9%
without reducing social welfare if policy uncertainty were minimized.

A similar exercise compares social welfare under the baseline level of policy uncertainty
to a scenario with maximized policy renewal uncertainty. As shown in Figure 8, if the
policy uncertainty is further exacerbated such that the policy renewal completely surprises
investors (policy belief parameter = 0 in 2011), the social surplus of wind energy with a
subsidy level of $22/MWh is lower than that the social surplus achieved with $20/MWh
under the current level of policy uncertainty. This exercise illustrates the fiscal cost of policy
uncertainty: removing policy uncertainty could save fiscal expenditure for the government
without compromising social welfare.
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7.3 Effects of Early Resolution of Policy Uncertainty

The third counterfactual exercise is to quantify the welfare effects when policy uncertainty
is resolved early. I focus on the policy uncertainty in 2011 and simulate the investment
decision under two scenarios. In the first scenario, policy uncertainty was resolved at the
beginning of 2011 with the government drawing a random outcome from a binary distri-
bution (mean of 0.4) and announcing the policy extension status to investors. This is the
early resolution of policy uncertainty and wind farm investors would know the future policy
status promised by the government before they make the entry decision. In the second sce-
nario, policy uncertainty was resolved after the wind farm investors made the investment
decision and the mean probability of policy renewal is 0.4, mirroring the baseline scenario.
Both two scenarios have the same mean likelihood of policy extension, and the only differ-
ence is the timing of policy uncertainty resolution. This exercise is in the same spirit as in
Gowrisankaran, Langer, and Zhang (2024) and also similar to the mean-risk decomposition
exercise in the trade policy uncertainty literature (Handley and Limão, 2017).

The results are shown in Figure 9. I plot the percentage change in the number of new
projects, total outputs, and social surplus compared to the baseline scenario. I find that when
the policy uncertainty is resolved early, the number of new wind projects will be smaller.
This is consistent with the intuition that early resolution of the policy uncertainty will reduce
the rushed entry of wind farms and alleviate the negative impact of policy uncertainty.38

Overall, the welfare effect of policy uncertainty under early resolution is positive compared
with the baseline scenario, and the social surplus of wind energy increases by 1.9%.

Early resolution of policy uncertainty captures 14.0% of the welfare gain under full
elimination of policy uncertainty. Despite that the PTC is always renewed ex post, the
ex-ante uncertainty faced by wind farm investors results in both a lower expected value
of subsidy and a larger variance of realized policy status. Keeping the expected value of
subsidy the same but reducing the variance of realized policy status can recover 14% of
welfare loss, while the rest 86% of welfare loss is due to a lower expected value of subsidy
from ex-ante uncertainty. Although the subsidy was in effect on the market at all times,
ex-ante policy uncertainty undermined the role of the subsidy by shifting the expectations
of investors and led to welfare loss.

38Mathematically, the key is that entry probability is a concave function of the difference between profits
if entry in the current period and the option values from waiting.

40



Figure 9: Welfare Effects of Early Resolution of Policy Uncertainty
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Notes: This figure shows the welfare effects of policy uncertainty under early policy uncertainty. I keep the
belief parameter as it is for other years, and simulate the market outcomes with the belief parameter in 2011
as 0.4. I simulate the model when the policy uncertainty is resolved before wind farm investors make the
entry decision (early resolution) and after (baseline). I calculate the change in the number of new projects,
total outputs, and social surplus when policy belief is 0, when policy belief is 1, and when policy uncertainty
is resolved early compared to the baseline scenario.

8 Conclusion

I evaluate the dynamic consequences of policy uncertainty in the US wind industry. The
continual expiration and extension of the Production Tax Credit created policy uncertainty,
which expedited wind farm investment and created a bunching of the investment timing at
those policy expiration dates. Moreover, policy uncertainty also caused a large mismatch
among wind farm investment timing, continuously improving upstream turbine technology,
and the evolving demand for wind energy.

To evaluate whether expedited environmental benefits from wind energy outweigh the
efficiency loss from distorted investment timing, I develop an empirical model featuring the
bilateral bargaining of long-term contracts, buyer choice, and dynamic wind farm invest-
ment under policy uncertainty. I find that a lapse in policy extension reduced the perceived
likelihood of policy renewal to 30%. I implement counterfactual simulations and find that
removing policy uncertainty postpones the entry of 53% of the 2011 wind farm cohort by
3.5 years. The social surplus increase by 5.9 billion dollars and 28.9% after removing pol-
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icy uncertainty. Moreover, policy uncertainty imposes fiscal burdens on the government,
as the total subsidies can be partially saved without compromising social welfare if the gov-
ernment can manage to contain policy uncertainty. I also find that early resolution of policy
uncertainty could capture 14% of the welfare gain under full removal of policy uncertainty.

Overall, this paper highlights the importance of containing policy uncertainty under
a dynamic market environment, which is often the case for those nascent industries. After
decades of “on-again/off-again” policy status, the Inflation Reduction Act of 2022 extended
the Production Tax Credit until 2025. Moreover, it was announced that the Clean Electricity
Production Tax Credit will replace the traditional Production Tax Credit after 2025 which
will not be phased out until 2032, or when U.S. greenhouse gas emissions from electricity
are 25% of 2022 emissions or lower. Strong long-term industrial support eliminates interim
policy uncertainty and will further boost the development of wind energy and improve al-
locative efficiency.
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Supplemental Appendix for The Dynamic Efficiency of
Policy Uncertainty: Evidence from the Wind Industry

A Additional Figures

Figure A1: Timeline of Building a Wind Farm

Land Lease; Permit;
Interconnection

Contract Negotiation;
Seek Financing Construction Project Operation

(1-2 Years) ( 9-18 Months) ( 6-9 Months) ( ~ 30 Years)

Notes: The main source of the time statistics is the Wind Powers America Annual Report 2019 by AWEA.

Figure A2: Capacity by Offtake Types

(a) Capacity Share
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(b) Capacity Volume
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Notes: This figure shows the capacity distribution by offtake types across years. There are four offtake
types: utility PPA, non-utility offtaker, merchant hedge contracts, and direct ownership. Panel (a) describes
the share of capacity, while Panel (b) shows the volumes.
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Figure A3: State-level Policies

(a) Tax Policies
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Notes: This figure shows the frequencies of different types of state policies for states with or without the
RPS. State policies, including the RPS, are hand-collected by the author from DSIRE
(https://www.dsireusa.org).

Figure A4: Time Trend for Investment: Capacity
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Notes: This figure shows the annual trends of the total capacity and average capacity of new wind projects. I
construct the time series based on the data from EIA-860. The red bars in Panel (a) represent the years with
policy deadlines.
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Figure A5: Construction Time

(a) by Online Years
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Notes: This figure shows the time trends of the construction time for new wind projects by their online years
(Panel (a)) and construction start years (Panel (b)). I construct the annual time trends of the average
construction time from FAA data and EIA-860.

Figure A6: Interconnection Queues

(a) Average Time
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Notes: This figure shows the descriptive evidence for the interconnection queues. Panel (a) plots the average
time spent between entering the interconnection queues and starting wind farm construction. Panel (b) plots
the distribution of years to start construction and years to enter the queues, where the size of the circles
represents the number of wind projects. The interconnection queue data is from ISOs/RTOs including
MISO, SPP, PJM, ISONE, NYISO, and CAISO.

A3



Figure A7: Time Trend of Wind Turbine Technology

(a) Hub Heights
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(b) Rotor Diameters
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Notes: This figure shows the annual time trends of turbine technologies for new wind projects. I construct
the annual time trends of hub heights and rotor diameters from the U.S. Wind Turbine Database (USWTDB)
published by USGS.

Figure A8: Time Trend of Wind Speeds
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(b) Standard Deviation within Locations
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Notes: This figure shows the annual time trends of wind speed at locations of new wind projects. The wind
speed is measured at 80 meters at sites nearest to the wind project location based on the Wind Toolkit Data
from National Renewable Energy Laboratory (NREL). The mean and standard deviation for each wind
project is measured using hourly wind speed between 2007 and 2013.
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Figure A9: Description of Annualized Capacity Factor

(a) Capacity Factor and Age
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(b) Capacity Factor, Age, and Cohort
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Notes: This figure presents the descriptive data patterns of the annualized capacity factor of wind farms.
Panels (a) and (b) explore the relationship among the capacity factors, ages, and cohorts of wind farms. I
rescale the annualized capacity factor and divide it by 1000. The average annualized capacity factor is
2.82× 103 at the wind farm and year level. Panel (a) plots the coefficient estimates of βa in equation (11),
controlling for the entry cohort dummies. Panel (b) plots the coefficient estimates of βc in equation (11), for
the groups of wind farms of age 1 and age 2-5 separately. For both Panels (a) and (b), the 95% confidence
intervals are constructed from the robust standard errors. Panel (c) shows the relationship between the
annual output and the nameplate capacity of wind farms. I residualize both the annual output and the
nameplate capacity on entry cohort dummies and age dummies. The scatter plot is at the wind farm and year
level. The red solid line is the local polynomial approximation, while the gray dashed line is the linear fit
between these two variables.
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Figure A10: PPA Price and WTP of Alternative Utilities
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(c) Time Trend of PPA Prices
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Notes: This figure describes the basic pattern of the Power Purchase Agreement (PPA) prices. Panels (a) and
(b) show the conditional relationship between PPA prices and willingness to pay shifters for the alternative
utilities within 400 miles. Panel (a) shows the relationship between PPA prices and the average effective
prices (retail electricity prices and renewable credit prices) for alternative utilities, while Panel (b) shows the
relationship between PPA prices and the average renewable portfolio gaps for alternative utilities. Both
Panels (a) and (b) control for the renewable portfolio gaps of the focal utility in the bargaining pair, effective
market price, estimated unit capacity price, turbine cost, as well as the total capacity for the wind farm and
the utility participating in the bilateral negotiation. Panel (c) plots the average time trend of the PPA prices.
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Figure A11: Dynamic Model Fit
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Notes: This figure shows the dynamic model fit. The red line denotes the model-predicted number of wind
projects, while the gray dashed line denotes the number of wind projects in the raw data.

Figure A12: New Projects, Capacity, and Output with and without Policy Uncertainty

Benchmark: 2011
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Notes: This figure shows the number of new projects, the amount of new capacity, and the total outputs
generated by the new cohort under the baseline scenario and when the policy uncertainty is removed. I set
the level in 2011 as the benchmark and calculate the percentage change in later years.
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Figure A13: Welfare Decomposition
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Notes: This figure shows the welfare decomposition. The change in the total benefits from wind energy can
be decomposed into three channels: the delayed environmental benefits, the improvement of timing
alignment between investment and technology, as well as the matching efficiency gain between utilities and
wind farms.
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Figure A14: Welfare Heterogeneity from Removing Policy Uncertainty
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(b) Utility Demand Shifter
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(c) Renewable Portfolio Standards
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(d) State Subsidies
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Notes: This figure shows the welfare effects when policy uncertainty is removed across states with different
characteristics and state-level policies. Panel (a) plots the net social benefit change against the average
renewable portfolio gap. Panel (b) plots the net social benefit change against the average utility demand
shifters. Panel (c) plots the net social benefit change against the renewable portfolio standards in each state
in 2012. Panel (d) plots the mean net social benefit change among states with or without certain state-level
subsidies, including sales tax incentives, property tax incentives, and industry recruitment supports.
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B Estimation Details for Bilateral Bargaining

B.1 Annualized Capacity Factor αit

I parameterize wind power generation Qw
ijt as a linear function of procured capacity kij , as

I find that the annual total output on average is linearly increasing with nameplate capacity.
I residualize both the annual total generation and the nameplate capacity on entry cohort
dummies and age dummies and then plot the linear fit and local polynomial approximation
between these two variables. As shown in Appendix Figure A9, the non-parametric rela-
tionship is very close to the linear fit, and the linear function has explanatory power as high
as 0.83. Under the assumption of the linear production function, I define the annualized
capacity factor αit =

Qw
ijt

kij
.

I then explore how the annualized capacity factor evolves with age by estimating the
model below, where ageit denotes the age of wind farm i in year t. I further control the
entry cohort of wind farms (cohorti). I set the group of age one as the baseline group, and
βa measures the differences in capacity factors between other age groups and the baseline
group within the cohort.

αit =
10∑

a=2

βa × (ageit = a) +
2018∑

c=2004

βc × (cohorti = c) + ϵit. (11)

I plot the age effects βa in Panel (a) of Appendix Figure A9. The overall average ca-
pacity factor is relatively stable even for ten years after entry. The capacity factor peaks
at age 5. However, the difference is only around 5% compared to the level of the baseline
group. Moreover, I divide the sample into two groups: wind farms of age 1 and wind farms
of age 2-5. I estimate the equation (11) without age dummies and plot βc for two age groups
in Panel (b). I find that capacity factors evolve systematically with the cohort, but display
limited variation with respect to the age of wind farms. This is further supported by the
fact that the cohort dummies alone explain 84.3% of the variations of the average capacity
factor at the cohort-age level, while the age dummies alone explain 5.5% only. Therefore,
I treat the annualized capacity factor to be constant as a wind farm ages and calculate it at
the age of one for the best data coverage such that αi = αit when ageit = 1.
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B.2 Transition Dynamics of Market Prices

Utilities have a rational expectation of the future evolution of both retail electricity prices
and renewable energy credit (REC) prices. I use the annual average retail electricity price
rmt at each statem. As shown in Appendix Figure B1, the average inflation-adjusted elec-
tricity price, weighted by the annual sales in each state, increased before 2009 but has de-
clined since then due to plummeting natural gas prices. I model the evolution of electricity
prices using an AR(1) process, and allow the AR(1) coefficient and the time trend to differ
before and after 2009. I assume that utilities have rational expectations with respect to the
evolution of retail electricity prices but for two separate periods, and the trend break in 2009
wasn’t anticipated. ξm is the state dummy.

rmt = γ1rmt−1 × (t ! 2009) + γ2rmt−1 × (t > 2009) + γ3t× (t ! 2009)

+ γ4t× (t > 2009) + γ5 (t > 2009) + ξm + ϵmt.
(12)

The estimation results are shown in Appendix Table B1. The time trend of electricity
prices varies sharply before and after 2009, and theR2 of the regression is as high as 0.963.

Figure B1: Time Trend of Aggregate Electricity Price
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Notes: This figure shows the time trend of average electricity price. I measure the average electricity price
with the state-level annual retail electricity price from EIA-861, weighted by the state-level annual
electricity sales and adjusted by inflation.

Similarly, I estimate an AR(1) model for the renewable energy credit prices λmt as
shown in Appendix Table B2. I take the coefficient estimates from column (1) and assume
utilities have rational expectations with respect to the evolution of renewable energy credit
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Table B1: Transition Dynamics of Electricity Prices

Electricity Price
(1) (2) (3)

Lagged Electricity Price 0.989∗∗∗ 0.706∗∗∗
(0.003) (0.057)

Time Trend -0.057
(0.087)

Lagged Electricity Price × (Year ! 2009) 0.688∗∗∗
(0.096)

Lagged Electricity Price × (Year > 2009) 0.678∗∗∗
(0.045)

Time Trend × (Year ! 2009) 0.934∗∗∗
(0.297)

Time Trend × (Year > 2009) -0.138
(0.176)

(Year > 2009) 6.252∗∗
(2.749)

Observations 765 765 765
Adjusted R2 0.955 0.962 0.963
State Dummies " "

Notes: This table shows the transition dynamics of electricity prices at the state and yearly levels. The
empirical model is specified in equation (12). Standard errors are clustered at the state level. *p < 0.10;
**p<0.05; ***p<0.01.

prices and have perfect foresight with respect to the Renewable Portfolio Standards zmt.

Table B2: Transition Dynamics of Renewable Energy Credit Prices

REC Price
(1) (2) (3) (4)

Lagged REC Price 0.886∗∗∗ 0.610∗∗∗ 0.880∗∗∗ 0.581∗∗∗
(0.019) (0.044) (0.020) (0.051)

Time Trend -0.170∗∗∗ -0.248∗∗∗
(0.041) (0.072)

Observations 417 417 417 417
Adjusted R2 0.841 0.847 0.843 0.852
State Dummies " "

Notes: This table shows the transition dynamics of renewable energy credit (REC) prices at the state and
yearly levels. The empirical model is specified in equation (12). Robust standard errors are reported. *p <
0.10; **p<0.05; ***p<0.01.
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B.3 Transition Dynamics of Renewable Portfolio Gaps

Utility j generates electricity using different fuel sources, including fossil fuels (f ), pro-
cured wind (w), other renewable sources (or), or other sources (o). I denote generation
capacity as ka

jt for utility j, year t, and type a, and the corresponding electricity generation
asQa

jt. The total electricity generationQjt can be expressed asQjt = Qw
jt+Qf

jt+Qor
jt +Qo

jt.
Utilities are faced with the Renewable Portfolio Standards requirement zmt in state m and
year t. I define renewable portfolio gap Qgap

jt as follows.

Qgap
jt = zs(Q

f
jt +Qor

jt +Qo
jt)−Qor

jt .

I first describe the overall time trend of electricity generation by energy source, sep-
arately for all the utilities and utilities in the Power Purchase Agreement (PPA) sample.
The share of coal-fired electricity is decreasing over time, while the share of gas-fired elec-
tricity is increasing at the national level as shown in Appendix Figure B2. Despite lim-
ited volumes, procured wind and other renewables (including solar, biomass, geothermal,
and utility-owned wind) are both increasing. Meanwhile, total generations from nuclear,
petroleum, hydroelectric, and other energy sources are mostly stable. Compared to the en-
tire sample of utilities, those in the Power Purchase Agreement sample have a much larger
coal power share compared to the national average and a smaller natural gas power share.

I next estimate the transition process of electricity output portfolios at the utility level. I
categorize different energy sources into four types: coal, natural gas, other non-renewables
(including nuclear, petroleum, and others), and other renewables (including solar, biomass,
geothermal, and wind directly owned by utilities). I exclude hydroelectric power following
Hollingsworth and Rudik (2019), as many Renewable Portfolio Standards excluded hy-
droelectric power built before the implementation. I use the AR(1) model to capture the
evolution process of net generations from these four different energy sources. As the ca-
pacity investment is lumpy, I exclude utilities that have never used a certain fuel type from
the regression. I take the coefficient estimates from the AR(1) model with utility dummies
and a time trend. The results are shown in Appendix Table B3.

I assume utilities have rational expectations with respect to the evolution of their own
electricity generation from each type of fuel source, and they have perfect foresight with
respect to the Renewable Portfolio Standards. If a utility has never used a certain fuel type
during the sample period, I assume that its expectation of future usage remains zero.
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Figure B2: Time Trend of Output Share by Energy Source
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(b) PPA Sample
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Notes: This figure shows the time trend of the shares of electricity generated by different energy sources.
Panel (a) displays the time trend for all utilities, while Panel (b) shows the time trend for utilities from the
Power Purchase Agreement sample. Other renewables include solar, biomass, geothermal, and
utility-owned wind.

B.4 Model Fit

I check the model fit of the bargaining model using estimates from Panel A of Table 1. The
binned scatter plots of the raw and predicted capacity and price according to equation (1)
and (2) are shown in Appendix Figure B3. The model explains around 42% of the data
variation for capacity, and 67% of the data variation for price.

Figure B3: Model Fit for the Bilateral Bargaining Model

(a) Capacity

0

50

100

150

200

ra
w

 c
ap

ac
ity

 (M
W

)
 

0 50 100 150 200
predicted capacity (MW)

(b) Price

30

50

70

90

110

ra
w

 c
ap

ac
ity

 ($
/M

W
h)

 

30 50 70 90 110
predicted price ($/MWh)

Notes: This figure shows the static model fit for the capacity function (1) and the negotiated price equation
(2).
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Table B3: Transition Dynamics of Electricity Generation by Sources

Net Generation
Panel A: Coal and Natural Gas

Coal Natural Gas
(1) (2) (3) (4)

Lagged Variable 0.868∗∗∗ 0.955∗∗∗ 0.936∗∗∗ 1.039∗∗∗
(0.067) (0.011) (0.020) (0.007)

Time Trend -0.067∗∗∗ 0.011∗∗∗
(0.013) (0.003)

Observations 2459 2460 7488 7491
Adjusted R2 0.969 0.969 0.977 0.976
Utility Dummies " "
State Dummies × Time Trend " "

Panel B: Other Renewable and Non-Renewable Sources
Other non-Renewables Other Renewables

(5) (6) (7) (8)
Lagged Variable 0.691∗∗∗ 0.994∗∗∗ 1.019∗∗∗ 1.103∗∗∗

(0.053) (0.008) (0.033) (0.022)
Time Trend 0.000 0.001

(0.002) (0.001)

Observations 9602 9607 2382 2388
Adjusted R2 0.987 0.985 0.978 0.975
Utility Dummies " "
State Dummies × Time Trend " "

Notes: This table shows the transition dynamics of net electricity generation using coal, natural gas, other
non-renewable sources (including nuclear, petroleum, and others), and other renewable sources (including
solar, biomass, geothermal, and wind directly owned by utilities) at the state and yearly levels. The
empirical model is similar to equation (12). Standard errors are clustered at the state level. *p < 0.10;
**p<0.05; ***p<0.01.

C An Alternative Dynamic Model

There is an alternative dynamic model for the evolving policy beliefs, which preserves the
stationarity of the problem.39 The notations are the same as in Section 4.3. ωt represents the
policy status in year t, which could take three values: (1) ωt = H , which indicates that the
federal subsidy is enacted in year t and the probability of policy renewal is 1; (2) ωt = L,
which indicates that the federal subsidy is enacted in year t, but the probability of policy
renewal is only b < 1; (3) ωt = 0, which indicates that the federal subsidy is terminated. In

39I thank Ken Hendricks and JF Houde for bringing up this modeling option and for the extensive discus-
sion of its feasibility.
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each period, the ex-ante likelihood of ωt = H conditional on policy renewal is equal to ρH .
I maintain the Assumption 1 from Section 4.3 that policy elimination will be perceived

as perpetual. The option value when the realized state variable is sit+1 and entry cost shock
is νit+1 conditional on different policy status ωt can be written as follows.

E[V (sit+1,ωt+1, νit+1)|ωt = H] = V (sit+1,ωt+1 = H, νit+1)× ρH

+ V (sit+1,ωt+1 = L, νit+1)× (1− ρH).

E[V (sit+1,ωt+1, νit+1)|ωt = L] = V (sit+1,ωt+1 = H, νit+1)× ρH × b

+ V (sit+1,ωt+1 = L, νit+1)× (1− ρH)× b

+ V (sit+1,ωt+1 = 0, νit+1)× (1− b).

E[V (sit+1,ωt+1, νit+1)|ωt = 0] = V (sit+1,ωt+1 = 0, νit+1).

The advantage of this model is to preserve the stationarity of the dynamic problem
and use two parameters b and ρH to capture evolving policy beliefs. ρH can be identified
from the frequency of investment spikes, while b can be identified from the magnitude of
investment spikes. However, the stationarity of the problem conflicts with the data pattern
of jumping investment spikes across years such that the model fails to predict when the
investment spikes will occur. The only solution is to index ρH and b by t, but the model
will be isomorphic as my baseline model.

D Estimation Details for Demand of Non-Utility Buyers
and Buyer Choice

D.1 Demand of Non-Utility Buyers

I test the robustness of the demand function estimation for non-utility buyers. I use the
renewable credit price for utilities as the instrument for the wind energy price faced by non-
utility buyers, as shown in Panel B of Table 1. Column (1) uses the same instrument as
in Panel B of Table 1. Moreover, I further use different combinations among three sets of
instruments, including the renewable credit price for utilities, the state-level subsidy dum-
mies, and the state-level annual land prices. Overall, the estimated mean elasticity of the
demand curve is between -1.7 and -1.4, and the baseline estimate (-1.6) is within this range.
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Table D1: Robustness Checks: Demand for Non-Utilities

log(Capacity)
(1) (2) (3) (4)

log(Price) -1.590∗∗∗ -1.389∗∗∗ -1.690∗∗∗ -1.423∗∗∗
(0.266) (0.230) (0.262) (0.255)

Observations 309 309 309 309
R2 0.336 0.355 0.323 0.352
Balance-Authority Dummies " " " "
Contract-Type Dummies " " " "
Instruments:
Renewable Credit Price " " " "
Land Price " "
State Policies " "

Notes: This table shows the estimation results of the linear demand curve for non-utility buyers (equation
(3)). I use a combination of three instruments for the price: the renewable credit price for utilities, the annual
agricultural land price at the state level, and whether the state offers subsidy policies to wind farms. State
policies include sales tax incentives, property tax incentives, and industry recruitment support for the wind
industry. Column (1) uses the same instrument as in Panel B of Table 1. Robust standard errors are in
parentheses.

D.2 Buyer Choice

I match eachwind farm in the samplewith utilities that were active in the EIA-860 datawhen
that wind farm started construction. The geographical distance between each wind farm and
utility pair is calculated using the coordinates of the wind farm and the closest power plant
owned by the utility. I first summarize the matching patterns between utilities and wind
farms in Appendix Figure D1. Panel (a) shows the raw distribution of the geographical
distance between the matched utility and the focal wind farm. The distribution is truncated
at 600 miles. The distribution displays a long tail but most of those matched pairs are
within 400 miles of each other. Panel (b) shows the distribution of the relative distance of
the matched utility and the focal wind farm, which measures how far away the matched
utility is compared to the rest of the utilities in the buyer pool. This variable takes the value
zero if the matched utility is the closest option, while it takes the value one if the furthest.
Panel (b) shows that the wind farm tends to match with a utility that’s closer geographically,
suggesting that geographical distance might be an important shifter in the matching cost.
Panel (c) explores whether a matched utility is likely to be in the same state as the focal
wind farm. Around 80% of the pairs of a wind farm and its matched utility are from the
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same state, while fewer than 5% of the pairs of a wind farm and its unmatched utility are
from the same state. Panel (d) presents a similar pattern for whether a utility and wind farm
pair is in the same balancing authority. Overall, a wind farm is more likely to be matched
to a utility that is geographically closer and within its own state or balancing authority.

Figure D1: Matching Patterns between Utilities and Wind Farms
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Notes: This graph summarizes the matching pattern between utilities and wind farms. Panel (a) shows the
raw distribution of the geographical distance between the matched utility and the focal wind farm. The
distribution is truncated at 600 miles. Panel (b) shows the distribution of the relative distance of the matched
utility and the focal wind farm, which measures how far away the matched utility is compared to the rest of
the utilities in the buyer pool. This variable takes the value zero if the matched utility is the closest option,
while it takes the value one if the furthest. Panel (c) explores whether a matched utility is likely to be in the
same state as the focal wind farm and Panel (d) explores whether a utility and wind farm pair is in the same
balancing authority.

Motivated by the empirical pattern, I restrict the buyer set to those utilities that are
within 400 miles of the focal wind farm.40 I next explore the determinants of buyer choice

40Some matched utilities fall out of this range, and I add those back to the choice set for the focal wind
farm.
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as shown in Appendix Table D2. The dependent variable (Match) is a dummy variable
that takes the value one if the utility is the chosen buyer for the wind farm. I find that
utilities with a larger renewable portfolio gap (larger unfulfilled demand) are more likely to
be matched. Moreover, utilities that are in the same state as the focal wind farm, or that are
closer, are more likely to be chosen.

Table D2: Determinants of the Utility Matching Choice

(Match)
(1) (2) (3)

Renewable Portfolio Gap (109 MWh) 1.516∗∗∗ 1.545∗∗∗ 1.589∗∗∗
(0.191) (0.211) (0.219)

(Same States) 0.063∗∗∗ 0.068∗∗∗ 0.068∗∗∗
(0.004) (0.004) (0.004)

Distance (103 Miles) -0.123∗∗∗ -0.111∗∗∗ -0.112∗∗∗
(0.023) (0.024) (0.024)

Observations 15109 15109 15109
R2 0.053 0.098 0.098
Wind Farm Dummies " "
Utility Type Dummies "

Notes: This table explores the determinants of utility choice of wind farms if they sell capacity through
utility Power Purchase Agreements. The dependent variable (Match) is a dummy variable that takes the
value one if the utility is the chosen buyer for the wind farm. Dummies for utility types include whether a
utility is investor-owned, a cooperative, or of other types (such as municipal, etc.). Standard errors are
clustered at the wind farm level. *p < 0.10; **p<0.05; ***p<0.01.

E Estimation and Simulations Details for Dynamic Model

E.1 EstimationDetails of theDynamicEntry under PolicyUncertainty

State Space and Basis Function I define a set of state variables as follows.

(1) the annual average productivity of wind turbines ᾱt,

(2) average turbine prices TPVestast ,

(3) market prices combining both electricity prices rmt and renewable credit prices λmt,

(4) inclusive value that can be attributed to the changing renewable portfolio gaps for
buyers Φit,
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(5) a predicted utility demand using time-invariant shifters in equation (1),

(6) non-utility demand shifter as a projection of pnui on Znu
i similar to equation (3),

(7) predicted matching cost, defined as the mean of (γ̂3 {mi ̸= mj} + γ̂4Distij) from
equation (4),

(8) one-year lagged amount of new wind capacity onlineKmt in the statem and year t

(9) the subsidy level dt,

(10) a dummy variable defining whether i is before 2013,

(11) and state-level land pricesWmt.

Among these 11 variables, (5), (6) and (7) are time-invariant, while others are time-varying.
I solve the profit of wind farms if they enter the market as Πit from the static model,
and approximate the profit surface as a function of the quadratic basis of the state space

{ul(sit)}Ll=1 such that Π̂(sit) =
L∑
l=1

γ̂Πl ul(sit). I approximate the value function asE[V (sit, νit)] =

L∑
l=1

γvl ul(sit) and solve the dynamic programming problem via value function iteration. I

use the state variables (1)-(10) in {ul(sit)}Ll=1 for the profit surface as land prices are only
relevant for entry costs. I use (1)-(9) and (11) in {ul(sit)}Ll=1 for the value function surface
when estimating entry cost parameters, as I only use sample window between 2013-2018,
while I use (1)-(8) and (11) in {ul(sit)}Ll=1 for the value function surface when estimating
belief parameters, as I estimate the model year by year and there is no variation in dt after
adjusted for inflation between 2006 and 2012. I use the fully saturated quadratic function
of state variables (1)-(5), while the rest state variables are included only linearly.

Transition Dynamics of State Variables There are six time-varying exogenous state
variables in my model. The subsidy level dt and the dummy variable defining whether i
is before 2013 evolve deterministically. The rest four variables, including annual average
productivity of wind turbines, the average turbine prices, the effective market price, and the
state-level land prices are exogenous in the model, and I recover their transition dynamics
from the data with AR(1) models.

For annual average productivity of wind turbines ᾱt and the average turbine prices
TPVestast , I only have the time variations of the data and I estimate AR(1) processes with
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trend breaks before and after 2009. The estimation model and results are shown as follows.

ᾱt = γα1 ᾱt−1 × (t ! 2009) + γα2 ᾱt−1 × (t > 2009) + γα3 (t > 2009) + ϵαTt.

0.330 (0.382) 0.753 (0.210) − 1.023 (1.270)

TPVestast = γTP
1 TPVestast × (t ! 2009) + γTP

2 TPVestast × (t > 2009) + γTP
3 (t > 2009) + ϵTP

t .

0.909 (0.118) 0.945 (0.163) − 2.019 (2.374)

Similarly, I estimate the transition dynamics of the state-level land pricesWmt using the
AR(1) model with rich heterogeneity across states for the constant term. The estimation
model and results are shown as follows.

Wmt = γW1 Wmt−1 + ξWm + ϵwMT .

0.908 (0.021)

I define the effective market priceΘit as a combination of future retail electricity prices
and renewable energy credit (REC) prices. This captures part of utility willingness to pay as
in equation (1). The transition dynamics of electricity prices rt and renewable credit prices
λt are explored in Appendix Section B.

Θjt =
t+T∑

s=t+1

Etβ
s−t[rs + λs(1− zs)].

I allow the AR(1) coefficient to vary before and after 2009 and I allow rich heterogeneity
across states for the constant term, consistent with equation (12) for the static estimation in
Appendix Section B. I estimate the transition dynamics of Θjt using the empirical model
below and results are shown as follows. The total number of observations is 800 and the
adjusted R-square is 0.996. The standard error is in parentheses and clustered at the state
level.

Θit = γΘ1 Θit−1 × (t ! 2009) + γΘ2 Θit−1 × (t > 2009) + γΘ3 (t > 2009) + ξΘm + ϵΘit .

0.786 (0.111) 0.762 (0.019) − 0.166 (0.111)

For the inclusive value that can be attributed to the changing renewable portfolio gaps
for buyers Φit, it’s endogenously evolving in the model through Kmt, but I assume the
transition process itself is exogenously given. I approximate the transition process of Φit as
an AR(1) model with the amount of one-year lagged new wind capacity online Kmt in the
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statem and year t as an endogenous shifter. I further allow the constant term in the AR(1)
model to vary across wind farms. The estimation model is below and the results are shown
as follows.

Φit = ρΦ1Φit−1 + ρΦ2Kmt + ξΦi + ϵΦit.

0.591 (0.020) − 0.240 (0.023)

The amount of one-year lagged new wind capacity online Kmt in the state m and year t is
thus another endogenous state variable in the dynamic problem. I assume Kmt to follow
another AR(1) process as in equation (13). When estimating entry cost parameters using
the more recent policy window, as stationarity is assumed, I directly estimate equation (13)
using data from 2015 to 2018, and the results are presented below the equation. Results
using data from 2014 to 2018 are very similar. When estimating the policy belief parame-
ters and implementing counterfactual simulations, I endogenously solve ρnc1 and ρnc0 in the
equilibrium.

Kmt = ρnc1 Kmt−1 + ρnc0 + ϵncmt.

0.791(0.047) 0.032 (0.022)
(13)

A simple summary of the estimation algorithm is as follows.

1. A initial guess of bt is given.

2. Guess ρnc0 and ρnc1 , solve the value functions V 0(sit, bt) and V 1(sit, bt).

3. Simulate the trajectory ofKmt, solve for new ρnc0 , and ρnc1 and update the belief.

4. Repeat steps 2-3 until the values of ρnc0 and ρnc1 converge.

5. Solve the value functions V 0(sit, bt) and V 1(sit, bt). Predict the state-level entry rates
and match them with data.

6. Iterate on bt until the sum of squared errors is minimized.

E.2 Simulation Details of the Dynamic Model

The simulation procedures of the dynamic model mirror the estimation steps. For both the
baseline and the counterfactual scenarios, I simulate the model year by year according to
the following steps.
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1. For year t, I simulate a sample of potential entrants in statem and year t of the size of
PotentialEntrantsmt. The state variables of potential entrants follow the distribution
of sit+1 from statem and year t observed in the data.

2. Guess ρnc0 and ρnc1 , solve the value functions V 0(sit, bt) and V 1(sit, bt).

3. Simulate the trajectory ofKmt, solve for new ρnc0 and ρnc1 , and update the belief.

4. Repeat steps 2-3 until the values of ρnc0 and ρnc1 converge.

5. Solve the value functions V 0(sit, bt) and V 1(sit, bt).

6. Draw entry cost νit 100 times and each potential entrant makes optimal entry timing
decision according to equation (7). Sum over the entry decision of each potential
entrant and calculate the total number of entrants Entrymt.

7. Update the PotentialEntrantsmt+1 to add the number of delayed entrants from year t.
Repeat the steps (1)-(6) for year t+ 1.

For policy windows between 2013 and 2018, I solve the parameters of the endogenous
transition process ρnc0 and ρnc1 as well as stationary value functions V (sit) for years 2013
and assume the value functions are the same for the rest years. This is consistent with the
estimation assumption that the dynamic problem is stationary between 2013 and 2018.
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