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Abstract

This paper investigates the dynamic efficiency of policy uncertainty in the US wind energy
industry. Policy expiration embedded in the Production Tax Credit induced uncertainty among
wind farm investors and expedited investment. I compile a comprehensive data set of the in-
vestment, production, and long-term contracts on the USwind energymarket. I find significant
bunching in the number of new wind farms at the expiration dates of the short policy windows
and a large mismatch among wind farm investment timing, continuously improving upstream
turbine technology, and evolving demand for wind energy. I then develop an empirical model
featuring the bilateral bargaining of long-term contracts, endogenous buyer matching, and dy-
namic wind farm investment under policy uncertainty. Model estimates reveal that a lapse in
policy extension reduced the perceived likelihood of policy renewal to 30%, and counterfac-
tual simulations demonstrate that removing policy uncertainty postpones the entry of 53% of
the affected cohort by 3.5 years. Removing policy uncertainty increases the net social surplus
by 5.9 billion dollars and could save fiscal expenditure without sacrificing social welfare.
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1 Introduction

Industrial policies have been widely adopted to boost infant industries. However, given limited
government resources, political cycles, or uncertainty, many industrial policies start off by commit-
ting to a short period with expiration dates and might get renewed later. This common implemen-
tation pattern of “enactment – expiration – renewal” segments the policy into short time windows,
induces policy uncertainty at the expiration time, and steers investors to near-term incentives who
should otherwise plan for longer.

This paper explores the dynamic efficiency of policy uncertainty, using the US wind energy
industry as the empirical setting. Wind energy grew from a marginal share in 2000 to the biggest
renewable energy source in 2019. This industry is characterized by a huge irreversible investment
cost, and the boom of wind energy has been heavily supported by federal tax incentives, known
as the Production Tax Credit (PTC) in a form similar to long-term output subsidies. The PTC has
been active since 1992, but when implemented, it was segmented into a series of shorter policy
windows with expiration dates.1 A lack of government commitment, combined with occasional
lapses between expiration and renewal, caused policy uncertainty among wind farm investors about
the future extension.2 Under policy uncertainty, investors expedited their investment and bunched
investment timing near the expiration time. Consequently, it leads to two opposing forces shaping
social welfare. On the one hand, the expedited investment reaps environmental benefits earlier.
On the other hand, the bunching of investment approaching policy expiration creates a mismatch
among wind farm investment timing, continuously improving upstream turbine technology, and
evolving demand for wind energy. The overall welfare effect is ex-ante ambiguous.

I compile a comprehensive data set of the investment, production, and long-term contracts on
the US wind energy market and document three key stylized facts. First, I find significant bunch-
ing of the investment timing for wind farms at the expiration dates of the short policy windows,
especially in 2012, mainly due to a lapse between expiration and renewal. Second, while the in-
vestment bunched at expiration dates in earlier years, the upstream wind turbine technology is
quickly improving and becoming cheaper. This creates a large mismatch between the timings of
investment and technological advancement. Third, utilities, an important group of buyers of wind
capacity, have a shrinking unfulfilled demand as they procure more wind energy over time and
meet state-level regulations. Consequently, the expedited entry of wind farms that are equipped
with old technology preempts utilities of a larger unfulfilled demand, while more recent entrants
with better technology sell wind capacity to utilities of a smaller unfulfilled demand, suggesting a

1As noted in Bistline et al. (2023), the continual expiration and extension of PTC in the wind industry created an
‘on-again/off-again’ status of the policy and resulted in a boom-bust cycle of wind development. The industry calls
for “strong long-term policy support” according to the Union of Concerned Scientists.

2“Wind farm” and “wind project” are used interchangeably.
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matching efficiency loss between utilities and wind farms due to policy uncertainty.
Motivated by the stylized facts and institutional details, I next develop a structural model of the

wind energy market in the US, which consists of a dynamic part and a static part. In the dynamic
part, the wind farm investors form beliefs about the probability of the future renewal of PTC. Given
that turbine technology and turbine procurement costs are exogenously evolving, those investors
decide whether to invest in the current period or wait until the next period. If they decide to invest
in this period, there are two channels to sell wind capacity, and the discounted sum of flow profits
from selling wind energy is determined in the static part of the model. The first channel is for wind
farms to sell capacity to utilities over a long-term Power Purchase Agreement, while the second
channel is for wind farms to sell their capacity to other non-utility buyers such as corporations or
to sign merchant/hedge contracts.

In the static part of the model, wind farms first choose which type of buyer to sell wind capacity
to. If they decide to sell to utilities, they choose which utility to match with, weighing the profit
from a potential negotiation against the pairwise matching cost. Wind farms then negotiate with the
matched utility over the power purchase prices, total procured capacity, and whether to choose the
Production TaxCredit or an alternative cash grant as the subsidy type.3 Alternatively, for thosewind
farms that sell capacity to non-utility buyers, I model a linear demand curve, combining information
for both the corporate buyers and merchant/hedge contracts. For the bilateral bargaining, I model
the detailed profit functions for both utilities (the buyer) and wind farms (the seller). Utilities obtain
profits with procured wind energy from both selling electricity and obtaining renewable credits, net
the costs they pay to wind farms as negotiated in the Power Purchase Agreement, while the profits
for wind farms combine the revenues generated from the Power Purchase Agreement and total
government subsidies, net total turbine expenditures. The optimal procured wind capacity and
the subsidy type choice maximize the joint profit, and the negotiated price splits the total surplus
between the two parties.

I estimate the static model in three steps. First, I estimate the bilateral bargaining model, com-
bining the optimality conditions for the power purchase prices, total capacity, and subsidy type
choice. I recover parameters governing utility willingness to pay and wind farm turbine costs, con-
ditional on a rich set of controls of unobserved demand shocks. I estimate a bargaining weight
parameter, which is identified by the relative path-through ratio of utilities’ willingness-to-pay as
well as wind farms’ turbine cost to the negotiated price. Overall, I find that utilities value wind
energy more, especially if they are further away from the state-level standard, and they have two-
thirds of the bargaining weight relative to wind farms. Wind farms have a convex cost function with

3The Section 1603 Grant provided an upfront investment subsidy equal to 30 percent of the investment costs.
Between 2009-2012, investors could opt in for either PTC or Section 1603 Grant. I explain details of this alternative
subsidy option in later sections and in Appendix Section C.4.
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respect to the total capacity, and they value one-dollar tax credit as only 83.9 cents of cash grants.
Using the parameter estimates, I find that around 22.4% of wind farms will earn a zero or negative
profit without the Production Tax Credit. Even conditional on positive profits, the average profit
without PTC is 47.0% smaller than the average profit with PTC. This result highlights the potential
cost of missing deadlines and losing the qualification of PTC and explains the rushed entry when
there is a lower belief for PTC renewal.

Second, I estimate a linear demand curve for non-utility buyers and I instrument the wind en-
ergy price with supply-side shifters as well as state policies to identify the price coefficient. The
estimated average elasticity is around -1.59. Third, I estimate the buyer type choice and the utility
matching model. I find that the mean likelihood of selling capacity to a non-utility buyer is around
24.2%. The matching cost between a wind farm and a utility is much larger if they are located in
different states, and increases with their geographical distances.

The static model quantifies the profit for wind farms if they enter the market, and captures rich
forces underlying the profit function. In the dynamic part of the model, potential entrants make en-
try decisions comparing the option value of waiting and the expected profit from the investment net
the entry cost. The option value of waiting subsumes the perceived likelihood of policy extension.
I treat the perceived likelihood of policy extension as the parameter in the model and allow it to
vary over time, and thus the dynamic problem is non-stationary. As the belief structure will be of
infinite dimension without any restrictions, I impose two assumptions to make the estimation feasi-
ble. First, I assume that if the policy is eliminated, wind farm investors will hold the belief that the
policy will be terminated forever. Second, the perceived likelihood of a one-year policy extension
will carry over for future years in expectation for each cohort. Under these two assumptions, the
non-stationary dynamic problem is transformed into a sequence of cohort-specific stationary prob-
lems. The policy belief parameter acts as a weight between two boundaries of the optional value of
waiting. The lower bound is the continuation value when the subsidy is terminated forever, while
the upper bound is the continuation value when the subsidy is renewed according to the perceived
likelihood of policy extension in the next year.

For the dynamic part of the model, the key empirical challenge is how to separately identify the
distribution parameters of entry cost and the policy belief parameters. My identification argument
hinges on the temporal structure of the policy. I rely on a more recent policy window when there
was no policy uncertainty to identify parameters of entry cost distribution, given the perceived
likelihood of policy renewal to be one for the next year, while the magnitude of the investment
bunching would be rationalized by the belief parameters. The key identification assumption for the
policy belief parameters is that conditional on observables, the residual variation in the entry cost
moves smoothly across policy windows.

I estimate the dynamic part of the model in two steps. First, I focus on a recent policy win-
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dow when the policy was announced to cover a relatively long period. I assume the problem to
be stationary for the policy window, solve the dynamic model using functional approximation and
estimate the entry cost parameters by matching model-predicted entry rates with data. Second, I
use the estimated cost parameters to solve the dynamic model in earlier years with policy uncer-
tainty. I solve the perceived likelihood of policy extension year by year while allowing the belief
of endogenous state variables to be determined in the equilibrium.

I estimate the mean realized entry cost to be 17.94-19.19 million dollars, and I find the mean
entry cost increases with the land price. More importantly, there was enormous uncertainty with
respect to the policy renewal especially for the 2011 cohort. The average perceived probability of
policy renewal is around 0.3 due to the pessimism about the policy extension as well as the delayed
renewal action, which largely explains the investment spike that year.

With estimated model primitives, I implement four counterfactual analyses. In the first counter-
factual exercise, I simulate the investment decision when the perceived likelihood of policy renewal
is one such that policy uncertainty is eliminated, and then calculate the welfare consequences. Re-
moving policy uncertainty reduces the number of newwind projects in 2011 by 52.7% and increases
the number of new wind projects in 2012-2018 by 24.1% on average annually. Those delayed wind
farms would postpone their entry by 3.56 years.

Overall, the numbers of total wind projects are roughly the same, suggesting that removing pol-
icy uncertainty mainly delays the entry timing but keeps the total number of entrants constant over
an 11-year horizon. However, the total wind capacity increases by 6.3% once policy uncertainty is
removed and the total output increases by 8.7%, as more wind farms enter when turbine technology
is more advanced. I calculate the total social surplus of wind energy from the twenty-year oper-
ations of those wind farms. Wind energy substitutes the production of coal- or gas-fueled power
plants and brings three social benefits: 1) it reduces carbon emissions; 2) it saves fossil fuel costs;
and 3) it brings capacity values as it lowers the amount of new investment required to keep the
electricity grid reliable and safe. The total social surplus of wind energy is the sum of these three
benefits minus the turbine costs and entry costs paid by wind farm investors. I follow Callaway
et al. (2018) and estimate the average marginal operating emissions rate (MOER) of coal- or gas-
fueled power plants in each state and year, which measures the saved carbon emissions due to more
renewable energy. I find the total social surplus increases by 6.8 billion dollars and 18.4% after
eliminating policy uncertainty. This result demonstrates that although the delayed entry of wind
farms reduces the total benefits of wind energy, this negative effect can be completely offset by a
better timing alignment among investment, technology, and wind demand. The net social surplus,
which is the total social surplus further subtracted by the government subsidies, increases by 5.9
billion dollars and by 28.9% compared with the baseline scenario under policy uncertainty.

In the second counterfactual exercise, I investigate how the welfare effects of policy uncer-
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tainty change under different subsidy levels. I find that if policy uncertainty is fully removed, the
subsidy level could be reduced by $2/MWh (around 9%) without sacrificing social welfare, which
demonstrates the fiscal burden brought by policy uncertainty. In the third counterfactual exercise,
I quantify the welfare effects when policy uncertainty is resolved early. Following the same intu-
ition as in Gowrisankaran et al. (2023), I find that resolving policy uncertainty before wind farms
make their entry decision will reduce the rushed entry and alleviate the negative impact of policy
uncertainty, even holding the mean likelihood of policy extension constant. In the last counterfac-
tual exercise, I find that if turbine technology or utility demand is held constant, removing policy
uncertainty still improves social welfare but the effect shrinks to less than 30% of the full dynamic
results, which indicates that the dynamic market environment greatly exacerbates the efficiency
loss from policy uncertainty.

This paper contributes to the following four strands of literature. First, this paper contributes to
the literature on the measurement and evaluation of policy uncertainty. Policy uncertainty is per-
vasive and broadly studied in both macroeconomics and microeconomics. Examples include un-
certainty in economic policy (Baker et al., 2016), fiscal policy (Fernández-Villaverde et al., 2015),
trade policy (Handley and Limão, 2017), and environmental policy (Gowrisankaran et al., 2023;
Dorsey, 2019). Compared to the existing literature, this paper focuses on the US wind industry as a
specific empirical setting and studies the consequences of policy uncertainty with micro evidence.
Policy uncertainty in the Production Tax Credit in the US wind industry has also been recognized
by earlier work such as Barradale (2010) and Johnston and Yang (2019). My paper structurally
quantifies the extent of policy uncertainty and evaluates the dynamic inefficiency through the lens
of a structural model.

Gowrisankaran et al. (2023) is most closely related to my paper and studies the welfare conse-
quences of policy uncertainty in the Air Toxics Standards on the coal power industry. Compared to
Gowrisankaran et al. (2023), my paper focuses on a different empirical setting and exploits a differ-
ent strategy to identify policy belief parameters. Moreover, my paper highlights two new channels
through which policy uncertainty shapes social welfare: the misalignment between the timings of
investment and technology, as well as the matching efficiency between buyers and sellers.

Second, this paper relates to the literature on the renewable energy market. Recent work has
covered a wide range of topics, including intermittency (Gowrisankaran et al., 2016; Petersen et al.,
2022), spatial misallocation (Callaway et al., 2018; Sexton et al., 2021), values of wind energy
(Cullen, 2013; Novan, 2015), upstream innovation (Covert and Sweeney, 2022; Gerarden, 2023),
storage technology (Butters et al., 2021), transmission congestion (Fell et al., 2021), carbon taxes
(Elliott, 2022), contract risks (Ryan, 2021), interconnections (Gonzales et al., 2023; Johnston et al.,
2023), Renewable Portfolio Standards (Hollingsworth and Rudik, 2019; Abito et al., 2022), and
renewable subsidies (De Groote and Verboven, 2019; Kay and Ricks, 2023; Bistline et al., 2023;
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Banares-Sanchez et al., 2023). My paper develops a new empirical structural model for the wind
energy market in the US, which features the bilateral bargaining of Power Purchase Agreements,
the matching between utilities and wind farms, as well as dynamic entry of wind farms under policy
uncertainty, incorporating rich heterogeneity motivated by policies and a set of endogenous choices
of wind farms.

Third, this paper directly speaks to the empirical literature about industrial policy implemen-
tation. Specific to the power and clean energy sector, there are recent papers about the timing of
subsidies (Langer and Lemoine, 2018; Armitage, 2021), subsidy design (Barwick et al., 2023), and
subsidy types (Johnston, 2019; Aldy et al., 2023). Different from the previous papers, I focus on
policy continuity and demonstrate the potential welfare loss from the “on-again/off-again” renewal
pattern of subsidies, especially when the market environment is dynamic.

Last, this paper also contributes to the literature on the dynamic model and firm beliefs (Do-
raszelski et al., 2018; Jeon, 2022; Gowrisankaran et al., 2023). I develop a tractable industrial
dynamic model with evolving policy beliefs under policy uncertainty and I empirically estimate
investors’ belief parameters utilizing the temporal structure in the policy design.

The rest of this paper is organized as follows. Section 2 provides background information on
wind industry and government policies in the US. Section 3 summarizes the data as well as the key
stylized facts. Section 4 presents the empirical model, and Section 5 discusses the identification
assumptions and the estimation procedures. Section 6 provides model estimates and Section 7
presents counterfactual results. Section 8 concludes.

2 Wind Industry and Government Policies in the US

2.1 Wind Industry in the US

Wind energy has become America’s biggest renewable energy source. It provided 8.3% of the to-
tal electricity generation and 42% of new power plant installation in 2020 (Wiser and Bolinger,
2021). As shown in Figure 1, wind energy grew from a very marginal share in 2000 to the fourth
most important energy source in the US in 2020. The renewable energy boom, together with the
fast-growing gas-fired power, gradually takes up the market share of coal-fired power plants. Ge-
ographically, wind energy is concentrated in Texas, the Midwest, and the Plains. Texas enjoyed
the largest wind generation, taking up around 28% of the total wind power generation of the entire
nation in 2019. Meanwhile, Iowa and Kansas have the highest wind energy penetration rates of
more than 40% in their state-level total electricity generation.

A wind farm requires enormous upfront investment. For example, investors had to spend more
than 100 million dollars to construct an average-sized wind farm in 2019 just for the turbine pro-

6




	Introduction
	Wind Industry and Government Policies in the US
	Wind Industry in the US
	Government Policies

	Data and Stylized Facts
	Data
	Stylized Facts
	The Timing of Investment
	Timing Mismatch
	Matching Efficiency between Wind Farms and Utilities


	Model
	Static Part
	Dynamic Part

	Identification and Estimation
	Static Part
	Dynamic Part

	Results
	Static Parameters
	Dynamic Parameters

	Counterfactual Analysis
	Effects of Policy Uncertainty on Investment and Welfare
	Effects of Policy Uncertainty under Various Subsidy Levels
	Effects of Early Resolution of Policy Uncertainty
	Effects of Policy Uncertainty without Dynamic Environment

	Conclusion
	Additional Figures and Tables
	Data Cleaning
	PPA Data
	REC Price Data
	Interconnection Queue Data

	Estimation Details for Static Part
	Estimation of Annualized Capacity Factor it
	Estimation of Effective Market Price jt
	Estimation of Total Renewable Portfolio Gap jt
	Subsidy Choice
	Model Fit
	Demand for Non-Utility Buyers
	Buyer Choice

	Dynamic Model and Computational Details
	An Alternative Dynamic Model
	Estimation Details of the Dynamic Model
	Simulation of the Dynamic Model

	Calculation of Social Benefits of Wind Energy

